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A General Method for the Computation of Cartesian Coordinates

And Partial Derivatives of the Two-Body Problem

A general solution for cartesian coordinates and partial derivatives

of the two-body problem has been programmed as a double-precision

Fortran 4 program for the IBM 7094. The compact subroutine provides

an accurate and efficient computation of coordinates and partial derivatives

for all cases of two-body motion. A derivation of all equations used by

the subroutine is given for those interested in the formulation. A de-

scription of the subroutine is also given for those interested in the

details of the computation.

W.H. Goodyear

IBM Federal Systems Division
P.O. Box 67

Greenbelt, Maryland
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INTRODUCTION

The classical two-body problem may be reduced to the solution

of the differential equations

dr ._
-- r

dt

dr r

d--t- = - _ --_-
r

where /_ is a known constant and

in the magnitude of-_. A solution of the two-body problem gives the

position vector r and velocity vector rat any time t in terms of the

position vector r 0 and velocity vector r at a reference time t . Many
practical applicatlon_.s also require the Oartial derivatives of th 0 com-

ponents x, y,_.z of r and x, y, z of-_ with respect to the components

_te yO'x,zOy,Ofrz,O.x,andy,.x_' "YO'and- l'artialTOof rO.aerivativesClassicalformulas for the coordi-

a (x,y, _.,_,_, &.)

(x0' Y0' z0' _0'_r0 ' _0 )

have the disadvantage that several different formulations must be avail-

able and one must be selected depending on the particular values of x 0,

Y0' z0' 30' Y0' _'0 and/_

General formulas are available for computing the coordinates x,y, z,

x,y, z and partial derivatives 8 (x,y, z,£,_, _.) as well as

(x0' Y0' Zo' _:o' #o' _o )

(x,y, _, _, _r, ;)
3# for all possible values of x ,y , " " z ,t , t and _.

The formulas have been programmed as a d0ub_e z0'x0"Y0'precision _0or_ran 4 sub-

routine for the IBM 7094. The subroutine is advantageous in that it offers

an efficient and compact program for the accurate computation of coordinates

and partial derivatives for all possible cases of two-body motion. The

purpose of this report is to give a derivation of all equations used by the

subroutine and a detailed description of the computations. For those who

are not interested in these details but only in using the subroutine, the

inputs and outputs are described in Paragraph 4. 1 below and a Fortran 4

listing is given in Paragraph 4.8.

The solution for the coordinates is derived in Section 1 by defining a

new independent variable _b by the differential equation

d$ 1

dt r
vii
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which Sundman applied to a theoretical investigation of the three-body

problem. The solution is a modification of that given originally by

Stumpff and differs primarily in that it is valid for all values of the

constant _ . The relation of the general solution for coordinates to the

classical formulas for elliptic two-body motion is also considered. It

is shown that_ is a generalization of the eccentric anomaly and that

the relation between t and _ is a generalization of Kepler's equation.

The partial derivatives are obtained in Section 2 by differentiating

the solution for coordinates and manipulating the results algebraically.

The approach is an extension of Sconzo's derivatives which are based

on those of K_hnert. Although the derivation is tedious and involved,

the final derivatives are compact and general. Some formulas used in

the derivation of the coordinates and partial derivatives are discussed in

Section 3 with formulas that are used for computation. A detailed

description of the double-precision Fortran 4 subroutine for the IBM 7094

is given in Section 4. The description should be sufficient for those

wishing to make modifications or additions to the subroutine.
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1. THE SOLUTION FOR THE COORDINATES

1. 1 THE EQUATIONS OF MOTION OF THE TWO-BODY PROBLEM

The equations of motion of the two-body problem are

r 1 r

mlr 1 = -(3 m I rn 2 3
r

12

m 2 r2 = - G mlm 2 3

r12

where
!

r12 = _ r2) • _ r2)

is the distance between the two bodies and G is the universal

constant of gravitation. At the time t the body of mass m has the in-
- i

ertial cartesian position vector _l and velocity vector rl, and

the body of mass m 2 has the inertial cartesian position vector r 2
4

and velocity vector rZ. Each body is attracted toward the other
2

with a force of magnitude G mlm2/rl2 where the acceleration of
** ,0

m I toward m 2 is r I and the acceleration of m 2 toward m I is r2.

Initial conditions are specified by the position _'l,0 and velocity

rl,0 of m I and the position _2,0 and velocity _r2,0 of m 2 at a

given reference time tO.

A closed-form solution of the differential equations above gives

"* _ -_ -_ "_ and
rl ' r i and r 2' r2 at any time t in terms of _'I,0' r I, 0

r 0' r at time t as well as the constants m , m 2 and G. Such2, 2,0 0 1

a solution is extremely important for many practical applications

in astronomy and astronautics. However, it is convenient to trans-

form the differential equations by defining the position R of the

center of mass and the position _ of m 2 relative to m I by



R -
m I r I + mz r2

m 1 + m 2

r ---r2 r I

so that 2. -%
-% m I r I + m 2 r2
R =

m I + m z

-% -% -%

r = r Z - r 1

give the velocity _ of the center of mass and the velocity _ of

m 2 relative to m I. Thus the values of the four quantities above

at the reference time to are

ml rl, 0 + mz rz, 0

I%0 = m I + mz

i_0=

-% -%

ml rl,0 + mz rz,0

m I + m 2

and

%-- o-, ,0

-% -- - r:"
r0 = rz,0 1,0 .

/. -%
Time differentiation of R and r above and substitution from the

differential equations show that

R= 0

._ 3
r = - G (m I + m Z) _/r

r = • r

An integration of these differential equations gives R, i_ and r, r

at any time t. Simultaneous solution of the defining equations for

R and _ shows that

where

m 2 __

i_1 = R- ml +m2 r

m, r
r2= R+

m 1 +m 2

Z



and time differentiation gives

-_ _ m Z

rI = R ml÷m2 r

:_ -_ m 1

r2 = R + m I + m_ r

so that r1, r I and r2, r Z may always be determined from R, R

and r, r

Thus the integration of the differential equations for i_l and r'_Z

has been transformed to an integration of differential equations for

l_ and _. Integration of the differential equation

R= 0

for R shows that

R= R 0

and

so that the center of mass moves along a straight line at constant

velocity• However, the inertial coordinates R 0, R 0 and thus R, R

at any time t are usually unknown or the center of mass is chosen

as the origin of inertial coordinates. In any case, the two-body

problem reduces to the solution of the differential equation

"" 3

-* 7/r = - /_ r

where

__/_,r - r • "_

is the magnitude of r and

/_ = G (m I + m 2)

is a postive constant. This differential equation is actually ob-

tained for all inverse-square Newtonian forces between two bodies,

3



but the constar_t _ may be different. For example, the same

differential equation describes the electrostatic repulsion of

two electrons but _ is then negative and is a more complicated

function of the electronic mass and charge.

4



1. Z DERIVATIVES WITH RESPECT TO A NEW VARIABLE

The differential equation

= _ 71r 3

where

r = r o r

is conveniently integrated by defining a new independent variable

by the differential equation of the Sundman transformation,

_= 1/r

where _ is zero when t is tO . Using a prime to denote differentiation

with respect to _,

t' = 1/_ = l/(1/r)

= r

from the properties of derivatives. The chain rule for differentiation

shows that

r = r t

= r r.

The method of solution described below requires determination

-4- •

of the successive derivatives of t and r wlth respect to ¢. The

second derivative of t is

1 1 _
• . r = -- • rt" = r t = _ Z-_ -_4 r

= r • r

where the quantity

a=V.#

is defined so that

t" s= r =

The second derivative of fi'_is

r = r r + r r



but

-_¢

r _, tI _/r 3=r =(- Ix )r

= -IX _'/r2

so that

r = - IX r + iT r.

The third derivative of t is

t'" " ' -_J _ -_ ]= r = iT = r • r + r • r

• • r 2; rr • r + _.(- . _[ )

= r (r .-_) - Ix

However, the quantity
-4P --_

= r • r - 2 Ix/r

is defined to obtain

tit' = r" = iT': r('_ .'_)-2 IX + IX = r_r -_ -2 IX /r) + IX

= _r + IX.

-.e

The third derivative of r is then

--*IX I Z " -%1
r = -- IX r'lr + IX r r /r + r-_ + ar

-_ r2 • 2= - IX r + IX _ iT/ + ( _ r + _ ) V- iT .//_/r

= _r r.

The quanity o_has the important property that

z_ _% 2
d= 2r • rI + Z #rl/r

-_/r 2) 2= 2_.(-_ + z . _ /r

= -2 IX iT Ir 2 + 2 _ _Ir 2

= 0

so that 0L is constant for every value of @ as well as t. This

property gives all the derivatives of t and _" as simple functions
.-a. --m

of the first two derivatives t', t" and r', r". From the results

above,

t"' = o_ t' + IX

6



s o that

t""" : o_

r Itl'tt = O_

t"'"" =

= Ol

t""' = Ot t'" = O_ ( Ol t t + _ )

= Ot 2tl + _ /2

_,,,, = _ _,,, =_ (_ _)

2 _,
2

tvl

2-"
rtt

2 2
t "t = (_ ( O_ t t + /_)

3 2
t' + ot

r""'" = O_ = (_ (Or r')
3 --

= Ol r v

etc.

The final result of the above derivation is that

t' = r

t" =

t"' = O_ r +

t""= OL

2
t"'"= ot r + ol

2
t""v_ ot o

3 2
t"'"" = Ot r + ot p

3
t"""" = Ot ff

etc.



and that

where

rll

-k

r.i

"_IIII

2
_'"" = O_

2
_ III11 _ _

3
r I iiiiit :

3
_llllllll _ (_

I
,--In,,

-- r r

= - # -_/r + ¢r r
*

= _ (-. _/r ÷ o-_r)

¢r #)

(- P _'/r + o-_r)

(r_)

(- _ _Ir + _)

etc.

o_ = r0 • r 0 -2. ///r 0

since c__"is zero and 0_ is invariant for all values of _/_ as well as t.



1. 3 SERIES SOLUTION IN THE NEW VARIABLE

The Taylor's series for t in terms of _ is

t = tO + tO ' _b + to,, _b2/2: + to,,, _3/3 ! + to,,,, _4/4 ! .....

where tO , to', to", to"', to"" ...... are the values of t, t', t",

t"', t"".... when V; is zero, i.e. when t is tO . But

t ' = r
0 0

t0" -- (70

to'" = o_ r0 + /_

t0,,,, = ol c_0

2

to ""' = O_

2
t """ = Ot
0

r0 + (_ /_

(7
0

etc.

from the results above where

O_ = -_r0 • % -- Z # /r0.

Thus substitution for to', to" to"', t ""
9 0 9 • • •

series gives

in the Taylor's

t= t
0 + r0 _L, + cr _b2/2 ,0

+ ( a r + _ ) @ 3/3! + _ (7 _4/4!
0 0

2 Z 6/6+ ( a r 0 +(_ ) @5/5! + _ _0 _ !

"I" o , , . . , o

9



or, collecting coefficients of r 0, a0, and

3 2

t = to + r0 ( ¢ + oz ¢ /3! ÷ a

+ _ { cz/z! + _ ¢4/4! +
0

+ I_ ( ¢,3/3! + a ¢5/5! +

3 7
_,515! ÷ a ¢ 17! + .... )

Z 6 3 _b8/c_ _b /6! + c_ 8! + .... )

Z ¢7 3/7! + _ ¢9/9! + .... )

gives the value og t corresponding to any particular value of

Similarly, the Taylor's series for -_ in terms of _b i,s

-* --,i _a _b2 . -_ ,,,
r = r0 + r0_ + r0 /Z' + r0

where

r = r r
0 0 0

%" = - .%/ro +

It!

r0 = ot r0 r0

IIII

r 0

-_'0 llllll

(- /_ ro/r 0 + a0 r O)

a r0 r 0

2 z_

etc.

from the results above. Thus

in the Taylor's series gives

_= _0 + r0r%_

2.
+ o_ r 0 r 0

2

÷ a r 0 r 0

¢3/3! + _ ,,,, ¢4/4 ! + ....
0

, 70,,,_,,,substitution for -_0 ' 0 ......

+ (_ /_ "{o/ro + a0 %) ¢ z/z'

_b3/3 ,.+ c_ (_ _-{o/ro + _0 _0 ) _b4/4!

_515! + a2(- /_ ;olro + _0 ro) @6/6!

÷ . , • • • • • •

4

or, collecting coefficients of r% and r%,

10



_, _ 21 ¢4 2 616 3 8 ]ror =[I ( _b Z! + ¢_ /4! ÷ a _ ! + _ _ /8! + ... )

r0

ro( _+ a _3/3! 4 a _b 5 w + _ _ /7! + ...1
+ 0

2 6 3 8
_0( _Z/2! + a _4/4! + a _ /6! + _b /8! + ...)

which gives the value of _ corresponding to any value of _.

The results above are conveniently summarized by defining the

transcendental functions

= Z Z 4/4 3s o 1 + a /2! + _ ¢ ! + a ¢ 6/.6! + ....

_b3/3 Z 5 3 7/7s = _÷ a ! + a _b /5! + a _b ! , ....
1

s2 _ z 4/ z 6/ 3 8/8= /Z? + a _b 4! + a _b 6! + a _b ! + ....

s3 = _b3/3] + a _5/5! + a 2 _7/7! + a 3 _ 9/9! + ....

which have the derivatives

sO' = _ S 1

s I' = so

sZ ' = S I

s3' = S2

with respect to _ . In this notation

t = to + r0 Sl + a0 s2 + _ s 3

gives t- for any value of _b. Also

!

r = t' = r0s 1 + aO s2' + _ s3'

= r0 so + a0 s I + # s2

and

= r' = rOs O' +
!

a 0 s I + # sz' = r0 O_s1 + a 0 s o + /_ s I

= aoSo 4 ( ar 0 + /_) Sl

ii



gives r and a corresponding to any value of

It is also convenient to define the functions

f = l - /z s2/r 0

g = r 0 s 1 + a0 s Z

which have the derivatives

!

f' = - # s 2 /r 0

= - // sl/r 0

g' = r0 sI' + a0s 2'

= r 0 s C + a s 1"0

However, the equation for t as a function of ¢ shows that

g = t- t0- # s3

is an alternate expression for g. Differentiation of this equation

shows that

g' = t' - # S3'

= r -/_s 2

is an alternate expression for g'.

In terms of f and g,

7=f_" +gr
0 0

gives 7" corresponding to any value of _b. Differentiation of this

equation with respect to ¢ gives

7"/= fl_'o + glr%

and differentiation of _ with respect to t gives

r = 0

12



where

and

= f' _ = (- g sl/r 0

= -= D Sl/_Or)

) (l/r)

!

g = g' _ = (r - g s2) {l/r)

or

= 1 - g s2/r

= g' _ = (r0s 0 +

= (r0s 0 + a 0 Sl)/r.

a0 Sl) (lit)

Another form of the equation relating t and _b above is obtained

by defining

T= r(-; • 7) -

which satisfies the identity

(i" "T= r • r -- 2 /2 /r) + /2

= _r+/a

Then

t = t o + r 0 s I + _0 s2 ÷ bts 3

= to+ r 0 ( ¢ + _s3) +

= t o + r 0 @ + a 0 s 2

aO s2 + _ s3

+( at0+# ) s3

so that

t = t o + r 0 _b + a 0 s Z + ToS 3.

Also, differentiation of this equation gives alternate expressions

for r and 0.

#

t = r = r 0 + _osl + ToS 2

t" = r' = a = a 0 s o + TO s 1.

13



In addition

_' = (_. ' = r .r + r .r = r

=

so that

t'" = r" = u ' = _/ = _ û SO +

• • 2)-{' _'+-_'(- // _/r = r ._) -//

u0 as 1"

14



i. 4 GENERAL SOLUTION FOR COORDINATES

The formulas above may be used to calculate r, r from given

values of r O, r 0 and g , to,t. First

Yr • -*
ro = 0 ro

.-, -%
cr = r,r
0 0 0

-% -%

• -- r 0= r 0 r 0 Z /_ /

are determined. Then the parameter {b and its transcendental functions

_bZ Z _b4 3 ¢6/6= 1 + _ /2' + _ /4! + _ ' +
sO ......

3 Z 5 3 _b7/7 ! + ....sI = ¢ + a ¢ /3! + a ¢ /5! +

= Z ¢6/ 3s2 ¢Z/2! + _ ¢4/4! + _ 6! + _ ¢8/8f + ...

= z 71 3s3 ¢3/3! + _ _ 5/5! + _ _ 7! ÷ _ _9/9! + ....

are obtained by solving the equation

t = t o + rOs 1 + a 0 s 2 + # s 3

for ¢ Then

r = rOs 0 + a 0 s 1 + # sZ

and

f = 1 - _ SZ/r 0

i = - p sI/(r ro) g = 1 -

give the final solution for the coordinates.

r -_ -"
= fro+ gr 0

g = (t - to ) - g s3

# Sz/r

These are the equations for coordinates given previously by the

author (1965).

15



The great advantage of these formulas is their complete

generality. They are a modification of equations which were

derived by Karl Stumpff (1947). Stumpff's derivation differs

somewhat from that above and he normalizes his equations for

computational convenience and simplicity. Similar formulas

have been obtained independently by Herrick (1960} and Sperling

(1961), but Stumpff was apparently the first to recognize that a

generalized solution for coordinates of the two-body problem

could be obtained by utilizing new transcendental functions sim-

ilar to s O , s I, s 2, s 3 above. Stumpff's work (1947) is given in

his textbook (1959) and is also available in English (1962). The

formulas above differ primarily in that the equations are not

normalized but are left in a form that is continuous through

the trival cases where D or {t- to) is zero, The formulas are

thus equally valid for negative values of bL or (t - to).

The transformation from the variable t to the variable

is often treated as a regularizing transformation since the sol-

ution for _ above is continuous through a collision which can

occur if D > 0 and _" is parallel to -{ . For such a collision

0 0

r is indeterminate at the origin but r_ is zero at the origin and

continuous through the collision. Also, r and ff equal zero at

the origin and are continuous through the collision. The con-

tinuation of the solution through a collisiDn is of course of

little physical importance. However, it is practically advantageous

because numerical problems are eliminated in the computation of

position coordinates for near- collisions.

The regularizing transformation from t to _ was used by

Sundman (191Z) in an investigation of the three-body problem.

Sturnpff realized that the transformation was of computational

16



value in solving the two-body problem, and that the resulting

formulas could be placed in a form that was equally valid for

elliptic, parabolic, and hyperbolic orbits including the cases

of circular and rectilinear motion. He also realized the re-

lation of the general formulas to classic formulas for elliptic,

parabolic, and hyperbolic motion. This provides an alternate

way of deriving the general solution, i.e. it may be obtained

by manipulating classical formulas. Herrick (1960) used this

approach and his formulas were modified to obtain the general

solution above before Sconzo informed the author of Stumpff's

prior work.

17



i. 5 CORRESPONDENCE TO CLASSICAL FORMULAS

In the case where _ is negative, let

a

define the length a and let

,,XE = + II_/a
V

define the angle AE. Then the functions s o , Sl, s 2, s 3 may be

expressed in terms of _-_and trigonometric functions of AE.

For example,

¢3 5/5 Z ¢7/7 3 9/
s3 = 13! + cl ¢ ! + _ ! + a ¢ 9! + ....

3
= ¢ /3! - ( IX /a) ¢5/5! + ( Ix /a) 2 ¢7/7! - ( Ix/a)34v 9/9! +...

5/ 7=_/d-Di--_3 ¢313! _ _V-/71--5¢ 5_+ _ ¢717_- ....

= (Vlx/a ¢ )3/3! -(v""_'-7"_-_)s/s! + ( l.I.V'r-'_'/"'a-a¢ )7/7! - ....

3

V/IX/a

= A3EI3! - A5EI5! + ZEI7 ! - ....

v'-;77 3

= AE - ( ZIE - _3_../3! + aSE/5! - _7E/7! - ....)

= A E - sin A E

with similar derivations for So, Sl, sZ.

18



The result is that

s o = cos AE

sin AE
S =

1 f#/a

l- cos AE

sz = ( g /a)

A E - sin AE

s3 = __/r_--- 3

These formulas give the following alternate solution when ot

is negative (which can occur only when g is positive)• First

7-" %-- r •ro 0

(r -- r • r

0 0 0

(y/a) = Z g /r - r • r
0 0 0

are determined. Then solution of the equation

sin A E I - cos AE

t = to+ r 0 / + (r +gg/a o ( y/a)

gives A E. Then

A_.._- sin A E

sin A E 1 - cos AE
r = r 0 cos AE + a0 + /_

V/'p,/a ( g /a)

and

give

f = 1 - _/L_ 1 - cos A E
g=t- to-hi

ro g /a

= _ __ sin A E * /_
rr g = 1 - --

o .j77V- r

-" + g ror = f7 0

-% -_ -%
r = _ r 0 + _ r o

hE- sin AE

3
V/ /a

1 .- cos _ E

( g /a)

19



This solution is also valid when 0_ is positive although AE and

V/-_/a are imaginary quantities. However, isthen the solution

not valid when a is zero and its numerical accuracy decreases

as 01 approaches zero.

The formulas for t, r, f, g, i, g above all reduce to classical

forms such as those given by Herget (1948) if

AE = E - E 0

where E and E 0 are, respectively, the eccentric anomalies at

time t and at time tO . The well-known relations

r 0 = a ( 1 - ecos E0)

a 0 = _--_-e sin E 0

are used to obtain the results.]_br example,

sin A E 1 - cos A E AE- sin A E

t = t o + r 0 ÷ a +_
%/[ _/a 0 3_la V/-_a

= t O + a (1 - e cos E0) sin AE /_/ p /a

,_'_a e sin E 0 (1 - cos AE) / ( _ /a)

+ _ (AE - sin A E) I la

2O



so that

(t- t0)= (1- e cos E0} sin AE

+ e sin E (1 - cos AE)
0

+ AE- sin AE

= sin AE - e cos E 0 sin A E + e sin E 0

e sin E 0 cos AE

+ AE - sin AE

AE + e sin E 0 - e (sin E 0 cos AE + cos E 0

= AE + e sin E 0 - e sin (E 0 + AE)

= (E - E 0) + e sin E 0 - e sin [ED ÷ (E - E0) ]

reduces to the classic form of Kepler's equation

E - e sin E = E 0 - e sin E 0 + /p/a 3 (t - to).

Since all the steps above are reversible, an alternate derivation is

to define

¢ = E- E 0

J_/a

and express Kepler's equation and the classic relations

= a (1 - e cos E)

sin AE)

a
f = l- --

r
0

g= t - t0 -

_=_
r r

0

e a

g = 1 -
r

[ 1 - cos (E - E0) l

(E - E 0) - sin (E E 0)

u/a

sin (E - E0)

[1 - cos (E - E0) ]

Zl



in terms of _band _ .

In the case where_ is positive, let

define the angle A F. An equivalent definition

AF = i AE

where i = _ and

c_ =- _/a.

Either definition gives

s o = cosh A F

sinh F
S =

cosh AF- 1

s Z =

sinh AF - AF

s3

which may be reduced as above to obtain classic formulas for

hyperbolic orbits. The solutions in terms of A E and AF are

both equally valid for all cases where _ is not zero, but im-

aginary quantities are eliminated by utilizing AE for negative

_ and A F for positive ft. However, both solutions decrease

in accuracy as _ approaches zero.

In the case where _ is zero, the functions s O , s 1, s Z, s 3

reduce to

s0 = 1

s = _b
1

sz =  Z/z

s3 = $3/3

ZZ



since only the leading term in these series is then non-zero. The

resulting formulas may also be reduced to classical formulas for

parabolic orbits. This suggests the possibility of using AE for

negative c_ , _ for zero a , and A F for positive a, which

corresponds to the classical approach. However, use of _b in the

general solution for a11vahes of a is advantageous for several

reasons. Computer storage requirements are reduced since only

one formulation is required. The general soltuion is also contin-

uous through zero ol so that small values of a do no require a

separate formulation for nearly-parabolic orbits. These advantages

can become very important in practical applications where diff-

erent types of orbits may be encountered.
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2.THE PARTIAL DERIVATIVES OF THE SOLUTION

2. 1 DIFFERENTIATION OF THE SOLUTION FOR COORDINATES

The solutions "_ and _ are functions of the initial conditions
0

and _0 as well as /_ and the times t and tO. The differential re-

lationships giving d_ and d_r in terms of d_ 0 and d&r0 as well as d/_

and the time differentials dt and dt0 are very important. The

differential relation between di_ and dF 0, d_ is given by Herget in

a form due to Bower {1932) which is similar to the earlier work

of K{.uhnert (1879). Sconzo {1963) has extended this approach to give

thedifferentialrelationbetweend_randd_0,A0 as well. The

approach given here is similar but concise expressions are ob-

tained which are valid for all cases of two-body motion. The

differential relationships are obtained by first differentiating the

equations of the solution for coordinates and then combining the re-

sults to eliminate all differentials other than d_, d_ and d_ 0, d_0,

d/_, dr, dt0.

The differentiations are as follows.

Differentiation of

give s

= f_0 + g r_0

r = f-_0 + g r0

d_" = f dF 0 + g d%

+ -_0 d f + -_0 d g

d#= _ d70+ _ d_°

Z4



Then

f = 1 - /2sz/r 0

gives

and

2
d f = -d/2 s2/r 0 - /2 d s2/r 0 + /2 s2 d r0/r 0

[-(f- I) d r0 - /2 d s 2 - s 2 d/2]/ r0

g = t - t0 - 12 s3

gives

dg = dt - d t o - d /2 s 3 - /2 d s 3

= - /2 d s3 - s3 d/2 + dt - dt0.

But the alternate expression

g = r0 S l + a0 s2

for g gives

dg = r0 d s I + s 1 d r0 + cr0 d s2 + s2 da 0

Similarly,

= Sl d ro + ro d s 1 + or0 d s Z + s2 d cr0

give s

d f = - d /2 Sl/(r ro)-/2 d Sl/_ ro)+ /2 Sl d ro/(r r02)+ /2s

and

gives

=- f dro/r 0 - f dr/r-/2 d Sl/(r ro)- d /2 Sl/(r ro)

= 1 -/2SZ/r

d_ = - d /2SZ/r - /2 d sz/r + /2szdr/r2

= [-/2d s2 - (g - l) d r - Szd/2] / r.

I d r/(rzr 0):
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But the alternate expression

gives

= (%% +  osl)/r

dg = (r 0 ds 0 + s o dr 0 * cr0 ds

Z

- (rOs 0 + cr0 Sl) dr/r

1 + Sl d oo)/r

= [s O dr 0 - _ dr + r 0 ds 0 +

The differentiation of the equation

t = t O + r 0 s 1 ÷ _0 sz + /_ s

cr0 ds 1 + s 1 dcr 0 ] /r.

is equivalent to equating the two different expressions above for dg.

This gives

- /_ ds 3 -

r 0 ds 1 +

s3d /_ + dt - dt 0 = s 1 dr 0 + r 0 ds 1 +

_0 dSz ÷ _ ds3 = - Sl dr0 - Sz d cr0 -

d(r
dsz + sz 0

s 3 dlJ

+ dt - dt 0

Similarly, differentiation of

r = rOs 0 + % s 1 + /_ s 2

is equivalent to equating the two expressions above for dg. This gives

[- /_ ds Z - (I_-I) dr - szd _] Ir

= [s0dr 0 - _ dr + r 0 ds 0 + _0 dSl + Sl dcr0] /r

dr = so dr 0 + s I d_o÷S 2 d/_

+ ro dso + _0 dSl + /_ ds2.

Z6



The differentiation of

2/ 2 4/ 3 6/6 ,So= 1 + _ ¢ 2! + _ _ 4! + _ _ + ....

= _b3/3 2 5/5 3 7/Sl _ + _ ! + _ _ ! + ,v _ 7! + ....

= 2/2- 4/4, 61 3 ¢8/8s2 _ ' + ot _ . , Z ¢ 6! + _ ! + ...

= _b3/3, + _ 5/ 2 7/7 3 9/9s 3 • ¢0 5!+ _ _ !+ _ _ !+ ....

is conveniently expressed by utilizing

8s

_ 0 2/2 4/4
= t÷ 2 _ • +3 ot_ • _ ' z _ 6/6 ! + ....

_Sl _ 3 5/5 2
&_ /3! + 2 _ ¢ f + 3 _ _7/7 ! + ....

8s 2

= 4/ 6/6 f 2 8/8_b 4! + 2 _ _b + 3 _ _b ! + ....

Os 3

--_ _5/5! + 2 a _b7/7! + 3 ce _b 9/9! + ....
= 2

Term by term differentiation of the series and combination of the
results gives

_s 0
ds 0 = _ s 1 d _ + _ dot

ds 1 = s o d_b+ -----.__ d_

ds _s
_2= s d ¢+- 2

1 &gt dot

b s 3

ds 3 = s 2 dg +--_9t dot
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Finally, differentiation of

ro= <%.
..-,..

% = rQ. ro

o_= %. %- 2 _i/r 0

gives
l

dro = 7 "_0 )-

= d g0 " _01r0

d a = r
0 0

d cl = g %. d - 2d/x Ir 0 + Z # dr01r0 Z

: z ( _dr01r0z + % •d#° - dr Ir01.

Z8



2.2 THE COMBINATION OF THE DIFFERENTIALS

The combination of the differentials above to give dr and dr

as a function of d%, d_ 0, d/_ , dt, and dt0 is simplified by using

the relations.

and

b *

0

f_- ig : 1
which are derived in Section Z.4 below.

Substituting the two expressions for

above for di_ and d_gives

so that

r0-_and _0 into the formulas

d_" = f d"_O + g d + _0 d f + _0 dg

: f d_ + g d_r0 + (_ -_- g#) df

+ {-i-_ + f_) dg

d'_ = f d-_o + g d-_ 0 + -_ {_df - f d g)

+ F'(- gd f+ fd g)

and, similarly,

fd_0+ g d_0+_0d _+_0d_

id_0 + _ d_0+I__- g_ d

+I-_'+ f_ d k

Z9



so that

+ fdb.

The expressions {g d f - f d g), {-g d f + f d g) and

{g d f - f d g), (-g d f + f d g) are evaluated in order as follows.

Firstly,

(gd f- id g)= %[-(f -1) dr 0 - #ds z- Szd g ] /r 0

-f [ s 1 dr 0 + r 0 ds 1 + a 0 ds z + s z d_ 0 ]

= [-fs I -(f-l) glr01 dr 0 - f r0 ds I -(g p Ir 0 + f %) ds Z

-f s2 dc_ 0 - (g SZ/rO) c_

_s
1

= [- f s 1 - (f-l) _/r 0 ] dro-fr 0 (sod _) +--_ d_ )

as 2
/r 0 + f _0) (sI d_ + 8o_-(g/_ dc_)

d_ 0 -- (g sz/r O) d_

= [-fs I - (f - I) g/rol dr 0 - [ f rOs 0 + (g /_/r 0 + f _o)Sll

8s I 8s z

- [f ro 8_ + ({ /_ /ro + _ _ 0) 8------_--- ] dc_

de

- f sZ d c_0 - (_ szlro) d#

_ rOSo+ _0 s
= [-f s I - (f - i) g /ro] dr 0 If 1

r

- [

/_s 8s
1 I

r
r r 0 3or

0

Ps 1

r r 0

g] rdz#

+(
rOs 0 + _osl #

r 0

#s 1

r r
0

oo )
8s 2

ac_
--]da

- f_zd %- (_Sz/ro) d_

3O



[-is_-tf-_) _/Zo I d, o- ti_- _) _d¢

___ as I _ sO 8sz
r (sl 7-6-- _) d_ -£s z d or

- (_ Sz/ro) du
as

1

= [_f s T -(f-l) _Irol dr 0 + I,Lr Z(sl 8c_
-- s

__ sz d_° -( _Sz/_ o) d.

But the identity 8s
asz2 I

sz = Z (s I _ - so _)

is treated in Section 3. 1.

This gives

(g d f - f d g) = [-} s 1 -(f-l) g/r O] dr 0

- _ s2 sZ Z(_ dro/rl Z- r 0

- f _zd _o -(i sz/ro) d.

-IP --_

+ r O. dr 0 - d P/ro)/Z

Z /.

= [_}s I _(f_l)_/ro]dr 0 - (g-l) szi_dro/r 0 + to,

- i sz d _o- c k _Z/rO) d_

= [-i s I -(f-l)_/r 0 +{(f-l) (g-1)/roldr 0

-(g-l) sZ + • d_ 0 - f s d_o - (SZ/rO) d/_0 Z

_(f_l)/ro l dr%.'_o/r 0 - (_-I) sz r 0 • dr 0

aSz da

0 Z

d_ 0 - d/_ /r O)

- iszC o.o + d o>- Sz/ro>d.
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or, finally,

(_df- i d g)=-

s ÷ (f-1)/r
1 0

r
0

%. d_ 0 - i_ SZ ro d-_o

_ -
Secondly,

(-g d f + f d g)= -g [-(f-l) dr 0 - j_ds z - szd;z ! /r 0

+f [ Sldr 0 + r0 ds I ÷ % ds Z + s d v ] "" g O'

= [fsl + (f-l) g/r 0 ]dro +fro dSl + (f % + g P/ro) ds 2

+ f s2 d aO + (g s2/ro) dp

= [f s I + (f-l) g/r O] dr 0 + f r0 (so d _b+

8s Z

+ (f ¢0 + g _ /ro) (Sl d_b + 8_

+(g SZ/r O) dp

8s_.

-- d _ ) + f s2 da 0

= If s 1 + (f-l) g/rol dr 0 + [f (rOs 0 + aO Sl) + gps

_s
1

+ [fro 8_

8sZ

÷ (f _0 + g/a /ro)---_-] dff

1/ro ] d_

+ f sz dcr0 ÷ (g sz/ro) dg

rOs 0 + _osl

[ f s 1 + (f-l) g/ro]dr 0 + (f r

8s I 8s z

÷ (f% + g// /r )+If r0 a_ o _l

+ f s z d aO + (g sz/ro) d/_

-ps 1

r r
0

d(_

--g) rd¢

3Z



= [ f s 1 + {f-l) g/r0}dr 0 + {f [ - f g) r d_b

. 8s 2

asl + (f _0 + g#/rO)-'-_a 3 da+ f s+[fro aa d ao+(g2 SZ/ro)d#

I 19Sl= [fsl + (f-l) g/r 0] dr 0 + r d@÷ f r0 a_

+ (f _0 + g#/rO)

aSz-]

-_--_-Udot + f s 2 d o'0 + (g sz/r0) dN

But

r0 dSl ÷ if0 ds2 + #ds 3 - sI dr 0 -s 2 d cr0 - s3 d# + dt - dt0

from above so that

8s I as 2 as 3

r 0 (s o d ¢+ _ dc_ ) + if0 (Sld ¢+ _ O1) +# (s 2 dg2+ Off dot )

= - s I dr 0 - s2 do 0 - s3 d# + dt - dt0

8 s I 8s2 _ s3
+ cr + #

(r0s 0 + a0s 1 +_s z) d_ = - (r0 8o_ 0 8ot 8o_
--) d_

s I dr 0 - s2 d _ - s3d # + dt -- dt0

8 s I 8s 2 8s
__/_3)

r d_ = - (r0 8oL + eO 8_ ÷# /k_

This gives

(-g d f+ fd g)

- sI dr 0 - s2 d a0 - s3 d# + dt - dt0

_s

1 +
= [ f s 1 + (f-l) g/r0]dr 0 - (r 0

- s I dr 0 - s 2 d _0 - s3 d#+ dt - dt 0

8Sl + (f % + g# /r ) 8s2 Ida
+ [fro 8a 0 8a

+ f sz d _0 + (g sz/r0) d#

8s 2 8s
+#--3) da

oa oa
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= [ (f-l)

I_ 8Sl+ r 0

+ (f (70 + g_ /ro)

s 1 + (f-l) g/r O] dr 0

8s 2 8s 3 8 Sl
_-- + fr

°s2]8o_ ' da_ (f-l) sz d _0 + (g sz/ro - s3) d#

+ dt - dt0.

But the coefficient of d a is

as
I

[(f-l)(f-l) r^ +
U 8oe

8 sZ 8s 3
(7 + g_/r ] _u__

0 0 8a

-/2s z 8Sl -/_ s2
r + [

r 0 80_ r
0 0

8s 2
cr + s + ) _/r ]
0 (ro I C;oS2 0

I as a_______8 s 1 Sl 2 ) +
= - _ s2 8a 8c_

and the identity

8 s 8s2
SzS3 = Z (s2 1 Sl__)

is treated in Section 3. i. This gives the following coefficient for d o_

8s3 - 2 Os

-ll (sZs3/2 + --)Oo_ _: (g s2 g s2 - /2SzS3 - _i
)/z

0s 3

= [ g s2 _ s2 (r0s 1 + _0sz + gs3) _/_ 2 _-] 2.
8c_

= s z - [s2. (t-t 0) + g 2 _ /2Ooe

Thus

(-g d f+ fd g) = [ (f-l) s 1 +(f-1)g/r01dr

- Is,.It-to +. 2 j 2+cf-lls2

+ (g sz/r 0 - s 3) d_ + dt - dto.

8s 3
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Setting
as3

U = s2 (t-t O) + /I.Z aa

gives

(-g d f + f d g)= [ (f-l) s 1 + (f-l) g/ro] dr 0

+ (g s 2 -U)(#dro/ro 2 +_r O. d_ 0 - dp/r O)

+ (f-l) szd (r0 + (g Sz/r 0 - s3) d_ + dt - dt0

[ (f-l) s 1 + (f-l)g/r 0 - (- _ SZ/ro)g/ro] dr 0 + U (- _ /roZ) dr 0

-U) rO. dr + (f-l) s2 d ¢0÷ (g s2 0

+(-gs /ro+U/rO+gs /rO-S3) d_+ _t- dt0Z Z

[ (f-1)s 1 + (f-1)g/r 0 - (f-1)g/rol dr%'-_o/r 0

+ U (- _ /ro Z) dr O.rO/r 0 + {g s2 -U )%. d_ 0

+ (f-l) sZ d cr0 + (U /r 0 - s3)d_ + dt-dt 0

[(f-l) sl/rO]%-d % + U (-/.t _o/r03) • dr 0 -U ro'd

_ _ _o._o +c,-,_ _ I_o._o+_o _oI

+ ( U /r 0 - s 3) dg + dt - dt 0

(-gand'd finallyf+ f d g) - (f-1)ro sl 70 .dr% + (f-l) s 2 _r O. dr% +(if- 1) s 2 r 0 • dr 0

roC+ gs 2 +U - U + (U - d_

+ dt - dt0
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The quantity U may be placed in the form

where
U = s z (t-to) + g ( _ s 4 - 3s5)

Z
s 4 = ¢4/4! + a ¢ 6/6! + a _ 8/8! + 3 _ 10/10! + ....

s5 = _ 5/5! + (_ _ 7/7! +

by using the identity

8s 3

Z 8a - _b s 4 - 3s 5

2 ¢ 9/9 ! + a3 II/II! + ...

treated in Section 3. I.

Thi rdly,

(-i dro/r 0 - f dr/r- _ dSl/r r0 - d# Sl/ rro)

-f (s o dr 0 - g dr + r 0 ds 0 + ¢odSl + s 1 d ao)/r

= (-i glr 0 - f SO/r ) dr 0 - (i rolr ) ds 0 -(g/_/_r rO+ fao/r)ds I

- (f Sllr ) d cr0 - (_ Sll r ro) dg

ir

= (-f glr 0 - i SO/r ) dro r 0 ( _ s I de÷ --

8s 1

4rro)+i  Sod¢ )

8s 0
d_)

-(f Sllr) d_o - (_ Sl/(r ro) d_

• - O_s Ir 2
= (-f glro f SO/r) dro + [- fro 1

r 0 8 so

- (_g/r r0 + i crolr ) solr I r d_b - [ r Off

8s 1

+ (_ . / I"rc_+ i _0 / r) -- IdOl - (is /r) d
8o_ I 0 - (_ sl/r ro)d/2.
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But the coefficient of r d_ is

__ r0 0_sl/r 2 -(._P /r r0 + i ¢ /r)So/r =0

-I rOsO r+ ffOsl

= -
3

r

and the identity

Z Z

So _ _s I = I

is treated in Section 3. i,

Ds 1

r r 0 r r 0

/Is 1 r 0 _s 1

2
r r r

0

a_____O) SOr
r

Thus

(_ d f - f d g} = (-_ g/r 0 - _ SO/r) dr 0

__u_[3 - (ro
r

_s
1

8_
ff

_ s2 d a- s I dr 0 0

8s 8s

0 8a 3_

- s 3 d/_ ÷ dt - dtol

fr 0 as 0 g/_ /r 0 + f a 0
-[ * r

r _}a

-(} s11r ) d _0 - { _;Sllr ro) d/_

: t- i o - i SO/r*
r

as 1-i- r-_ ro _ + _0

fr 0 a s o

r _

s 1 ] dro

8s 2

g_/ro+ f aO

r
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S

l
+ ( _ s - )

3 Z r
r

---g--- (dt- dt ).
3 0

r

But the coefficient of dc_ is

d cr + (
0 3

r

s3

gs I

) dp
r r

0

as _s

3 (ro 8_ + _0 8_
r

_/ s r
1 0

+
rr r

0

i (
r

rOs 0 + a osl

r 0

# S
1

r r

0

ff

0

S

1
= [r + ¢r

3 0 8_
r

as z

0 as
+P

8s 3
+ r (s

and the identity 8 s o

Z (s 1 as
S

0

as

i

as
--) = s lS2 + s 3

treated in Section 3. 1 below gives

as 1

a s

__L) 1
as

I a s I as zg r 0 +3 8_ 0 aft
r

+p
8s 3

+ r
SlSzz + s3 1

# r0 8 s 8 s23 [ I + aO
r ao_ as

+_

Ir s s as I

p I Z
3 --Z-- + r0 (

r 8o_

÷ P  s3]SzS3 + # --
2 as

as
3

as

+ r

SoS 3
-- +

2

for the coefficient of do_

S S

1 2 + (rOSo + _0 s
2

a sz SlS 3
---) + _ C-- + --)

0 8a Z

as
1

Z + SoS 3 = SlS Za_

as
Z Z

Z 8_ + sIs3 = s2

treated in Section 3. 1 give

Also, the identities
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2

[ r s sZ + r0 s sZ + a sZ + p SzS __+ # .Z3 1 1 0
r

_s
3

--] /z

/_sZ s 1

- r --r + 3 "[Sz (rosl + aoSz '+ _ s3_.+P.2
r

8s 3

= - (_-1) sl/r + --_ Is Z (t-to) + ..Z --] /Z8_
r

8s 3

8_

= [ -(_-l)sl/_ + ---2-- U3 ]/z
r

for the coefficient of dol Thus

(id_-_di) : [-_ ilro-_s01r +

+ [ -(i-l) Sllr +

+ ( _a__
3 s2

r

_E_
3 s 1 ] dr 0

r

g dr 0 z. •

% u1( + ro.a7o-

fs ir ro

)d e +( _ s 3r 0 3
r

__8_.__3 (dt - dto)
r

= [-f glr 0 - f solr + _ sI - (i-l) _Sl3 2
r r r

0

• & _ s z

+ [ -(i-1)sl/r + --_-UlTo'dr o + ( --3--
r r

÷

_S

1

r

s

1 /_ U /{__
+ [+(i-l)-- - +r r 3 r 3 s3

0 r 0 r

- -_--(dt3 - dto)
r

--.] /z

dg )
r
0

) d_
r r

0

_2__ g
3 Z

r r
0

---) d a
0

is I
] d#

r r
0

U ] dr 0
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=[-_ g/'o -fsol_ + _ si*(g-l) fl_o + _-3
r r

(_-I) s
I

+[ + -'8---U13 ro'd-_o +

r

/_2 U ]d% • ro/r 0

r 0

(_-1) f Sl) d a
2 0

r r

S

+[ 1 _ ( U s3)]d# - _..M_ (dt- dto)3 3

r r 0 r r 0 r

/zs 1 1

=[- f SO/r ro ÷ r r Z ---_] r%.d-_o - _--_-U3 (-//%/r03) " dr%
0 r r r

0

+[ r 0 O- r
r

(_0" d_o + r%'d_o)

÷[
S

1 _ ( U P (dt - dto)s 3) ] d/_ 3

r r 0 r r 0 r

or, finally_

+[

s o 1 1 B_

+ 7.> %.a%- o
0 r r r

0

(_ :)s _s ÷(_-l)/r

• Z. 1 "1 + U ] %.d r - (-_o.d% + _()-d_r O)r 0 r
r

s
1

( u } ] dp
r r 3 r s3" 3

0 r 0 r
(dt - dto}

Lastly, since

it follows that

fg-fg:l

d f'g + f d g - df.g - _ dg : 0

(- g d f + f d g) = -(_ d f - f d g)

s + (f-:)Ir
I 0

r 0
_0 -_0 2. 7 "d r• d + f s Z r O'd-_O + _ Sz 0 0

÷{g- 1) s
Z r 0 "d_r 0 + _sz/ro)dU
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Then substitution of the final expressions for (_ d f - f d g),

(-g d f+ f d g), (_ d f - f d g), (-g d _ + f d _) into the expressions

abox_e for dr and d_ gives the final expressions for the differentials.

Firstly,

I_ f s + (f-1)/rd_= fd-{o+ g dro+ 7 1 0 -*r
r 0 0

+7"

•d_ o - _s2 _o. d-%- _s z _o, d'_o

- _g-1) SZ_ro'd_r 0 - (SZ/rO) d#l

(f-l)ro s l %'d% + {f-l) s Z _o,d _0 + (f-l)s Z

or,

+g sZ _'d_r0 + U_o'd-F 0 -U_o'd'_o ÷ (U/r0-s 3) dg

as the

+dt- dt01

final differential d_,

dr= fd-_
0

fs 1

• oe

(f- 1)/r 0 ____ __
+

r ro-dr 0r

0
- i SZr to.dr 0 +

(f-l)

r Sl 7 %" d-_ 0
0

• _ " #_o "ago+ (f-l) sZ -_ ro.d_0 + g d% - U

-f S Z -_ r%.dr-" 0 -(g-l) S Z • d_ro"_ _0" + (f-l) s 2 • _0 _ z" d_o-_ro-d + g s 2 r r O-

+ [7(-SZ/rO) + _r ( U /r 0 - s3) ] d/2 + _rdt -- "_dto.
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Secondly,

_I- _o @ '_oro. - u -d_o
r

s, '7dM_ --M_ ( U -Z__ (dt- dt 0
3 r 0 s3) dM - 3

r r 0 r r _

+ r I . _o _o ;s- _Sl + (f'l)/ro -* dr 0 + f s 2 .d + ro. dr 0
r 0 ro •

+ (g°ll S?.._ood_o + (sz/ro) d.]

_d__o + U ,_ /_ __, _0 dr 0 sQ 1 __IZ_ d_. 0= " -" - +-2 + "_0"

r r r 0

_i ÷ (_-l)l_ _ +(fl)l_°-.-% -) 1
- r r ro'dro + r _r-'rO. d'_0

0

' _o ; " •d_+_Z_Vo.d_ o ÷ _d -U¢-.E)7 o 0
r

r ro.dr 0 r_o, dr 0r r

S

S r_o.d_o + (_-1)s 2 -_-_ro'd_ 0 +[-_(-rr_o ,

sz ?" U "_

+-_ /_ --3 ( r0 s 3) ] d#- /j--_- (dt - dto)
r 0 r r

4Z



or, as the final differential d_r,

r0 "dr 0d = d"_ +Urr 0

s

+1
r

s 1 +(_-l)/r_.:.
r ro • d-_ 0

r

r °d

0

si + (f-1)/ro :.-...

r ro° dr 0
r 0

_i + C_-l)/r -'rr-". d_"
0 0

r r

- (--l)_Igr r
0

- r rood

-d_r 0 + _ s 2 r ro-dr 0

+ (_-I) s 2 _'_ro.d_ 0 +[ _'(-sl/r r0

•" _ dt 0+rdt -

ro)+_ ( u/r o- s3)] d.
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Z.3 THE PARTIAL DERIVATIVES

The differential relations obtained above may be expressed in

terms of a set of partial drivatives as follows. Let x, y, z be the

components of-_ and :_, _, _. be the components of &r so that x 0, Y0'

z are the components of r and x0' Y0' _' are the components of,0 0 0

r0. Then the differential relations above may be expressed in the

following matrix notation.

d,: _ 0 |"'01+_ Ida01
0 _ _z0J _z0J

0 L_Zo

Eil xo1- f sz " IdYo

[.d%

E lxyozojxo1___,_1 Eo F_
+ ° Y [dY 0

r 0 _ Ldz 0

+ (f l)sz [i]ixoool xoIo
[_dzo
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+
I!' 0

g

0

0

g
 :xo]YO -

&o

_r o

_o
[d_o

s[i]ExoYO li ol rxiEo
zoJ I:J

_0

dY

Ld_ o

YO

q fd. o]
LdZo

li]c÷g
s2"

_0 fdXol
lfiol
Ld_oj

+

and,

0

il I -s2/ro .d
U/r 0 - s31

il f_xo]U_o/+U
Ld_oJ JJ

_o _'o]1%[dx°]
Ld_o

S

__(__qo+ -Z + )

r r0 r r0

I Xo YO Zo1

Yo/

ZoJ

s I + (_-l)/r

YO

z0
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s 1 + (f-1)/r 0

r

0

[Xo
e

,ozo]r xol
/dyoL
Ld'-o]

I_o/
Ld,o.I

0
0

o]F_._olo l_ol
Ld_oJ

U ,

s I + (l-l)/r

r

[xo,o,o]r . ol
/_.o/
Ld-,oj

+ [i][.o,ozo]
Ld_.oj

+ (_-1) s z

I: i]
_. LU/_ 0 -s 3 J

_0

Ldz0

, '. I_.o/
Ld_oJ

,.o]•[i]
Ld:oJ

+

The coefficient of dt in the above equations is a check on the solution

of the differential equation. The coefficient of dt 0 is the negative of that

for dt which indicates that an increase in dt 0 is equivalent to a decrease

in dt and vice-versa. In most applications of the differential relations,

t and t O are treated as fixed quantities and x, y, z, x, y, _. are con-

sidered as functions of x 0, Y0' z0' x0' Y0' z0 and sometimes /_ as well.
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\_. I-\ _,_-o

6_

d_0

a_/_'_o

8_-/_o

8_.18_o"_ _a_o'_

\_°/o_.,_o/

_L. 8 _1a%

a_/8'I0

_/_0

_'1 _'0

• 8

\_:_I '_'
+

• _io-__.o__'.' \_?I



The partial derivatives of x, y, z and _¢, _, z with respect to

are merely the coefficients of d/_ in the explicit differential expressions

above.

I:x!lily/ _/_ = U/ro s3

Oz/

I I
la_/ = Y sz/ro }

a8 y

_1 7, _ u/ - s3/

The partial derivatives of x, y, z and x, y, _. with respect to

and :_0' YO' _'0 are given by collecting the coefficients ofXo_ YO' Z 0

dx O, dy O, dz 0 and d_ O, d)o, d_: 0 in the explicit differential expressions

above. N more compact matrix notation is also used to express the

results as follows.
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x/aXo
y/Ox0

z/Ox0

a x/a_ 0

ay/a_ o

a z/a_ 0

ax/Oy 0

ay/ay o

azl _0

ax/a9 o

ay/a_ o

az/a_ o

ay/aZo] : f

8z/aZoJ 0

+ U

s I + (f-1)/r 0

r

0

-fs.

(f-l) sI

0
(f- 1 )s z

ay/a£ol =

a z/a_Cd
°o] 1g -u o {% _o

0

_taXo

_/Ox o

_/Ox 0

a_/ay o

o_/oy o

o_/ay o

a_,/o%1 : o

a_/a _oJ o o

÷ U

_:/o:_o
g-/a:_o

_./a_ o

a_:/a_ o

a_/a,)-o

-_!_o : :
-- + --2- +--y-) -
r r0 r r0

} sI + "(f-1)/r o

r

- 0

f s I ÷ (g-1)/r-

r

fs
2

_°_o][oa,)/a_ol :
a;,/ ;oJ o

--u o #o _

i zi1.i- x,.,ii.osz (__:) s2 o _'o Zo]
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In the expressions above for the partial derivatives, the parameter

U = s 2 (t-to) ÷ ;_ (_ s 4 - 3s5)

is a monotonically increasing and unbounded function of the time t. In

the case of elliptic motion where _ is negative, all other quantities in

the partial derivatives are periodic with the period

T = 2= /_/-V-_-_ 3

of the elliptic orbit. In general, the partial derivatives of x, y, z,

x, y, z with respect to x 0, Y0' z0' x0' Y0' z0 and bt then have an un-

bounded oscillation in time since the velocity components _, #, _ and

acceleration components _, _, _ whi.ch are multiplied by U have an

oscillation about zero with the period T, However, this effect can be

nullified for some derivatives if some of the other components x0, Y0'

Zo and _0' _;0' Z°o multiplying U are identically zero. In particular, the

coordinate reference frame may be chosen so that only x 0 and _r0 are

not identically zero, and the unbounded oscillation will then occur in

only eight of the thirty-six partial derivatives of x, y, z, :_, _r, _ with

respect to x O, YO' zo' xo' _ro' zo"

In the case of elliptic motion, it is shown in Section 3. 1 that

s 4 =

A2E/2! - (l-cos AE)

4

s5 = 5

VZ,/a
_vhich, with

(t-to) = r 0

A3EI3! - ( A E-sin AE)

AE

@ _/'tt /a

1 - cosAE

s 2 =
_/a

sin A 1_.
-I- 0"

V//z/a 0

1- cos A E

./a

g _

sin A E

r0 V/ /_/a

+ (7
1-cos A E

0
u/a

A E - sin A E
+

3v/. la

5O



from above, gives

A E- sin A E i - cos A E sin A E

U= 3;, 5 + (g - ;_ )

Of course, the partial derivatives may be computed for elliptic motion

by using AE rather than @ to solve for the coordinates and determine

all the quantities in the partial derivatives. Then the only secular term

in all the derivatives is that due to A E in the expression above for U •
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Z. 4 THE INVERSE PARTIAL DERIVATIVES

The solution of the two-body problem is still of course valid if

t is treated as the reference time and "_ and-_ as initial conditions.

Then % and z,r are obtained as solutions of the differential equation
0

at the time t . For this inverse solution,
0

r = W -_ • -_

=_.#

Ot = r • r - 2 _ /r

where 0_ is constant in time and therefore equal to the value above

computed from i_0 and _0" As in the solution above, _-and its

transcendental functions.

._Z Z 4/4 3 6s o = I + a IZ! +_ $; ! + a _ 16! + ...

";1 =7+°t _3/3! +a z_- s/s ! ÷ _ 35- 7/7 ! +...

2 6 3 - 8/ ....sz ='_ Z/z! + _ $ 4/4! + e $ /6! +_ ¢ 8! +

2 7 3 9
_'._ =_ 3/3 + O_ $" 5/5! 4- (X _" /7! +0_ $'- /9! + ...
.D

satisfy the equation

t0=t + rs I + ¢rsz + # s3"

The bar is used to distinguish parameters of the inverse solution

from those of the solution above. Also

r0 = r sO +_ s l + _ sg

and

"f= 1 - # SZ/r

"_= - _ _i / r0 r

g=t 0 - t-#s 3

= 1-Ix sz/r 0

5Z



which give
m

ro:f r+

r0 = + r

as the inverse solutions of the differential equations.

However,
t P

¢ = / dt-'_

J r _
t

0

from the definition of _b above where r$ is the value of the radius at

the times t;,_between to and t. But

t

o/¢ = dt'_ = -

t r$

so that _ is merely the negative of ¢

s o = s o

S -- -- S
I I

s2 = s2

s3=- s3

t

t J r::_
0

Thus

so that ¢ satisfies the equation

t o = t - r s 1 + a s Z - /_ s 3.

Also

r0 = r so - _rsI + _ sZ

and

_= 1 -_ s2/r

f = // sl/r r0

= tO - t + D s3 = - (t-t 0

= --g

g = l - /_s2/r 0

= f.
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This gives the formulas

ro : _-_- g-;'
r = -f r"÷ f -%'r

0

which were used above to obtain the partial derivatives. In addition,

substitution of

r = f r 0 + g r O

_--i 7 +_7 o0
into the first equation gives

_0 : Cfi- ig) _o

so that

f_-_g=l

which was also used to obtain the partial derivatives. Another property

of the inverse solution is that

= s z (to-t) + # ( _" s'-4

whe re

- 3s 5)

"s4 = s4

s 5 = _ s5

which gives

U = - U •

The relations above may be used to express the partial derivatives

in the inverse differential relations
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xol?xo,_x
yo|=I°yo,_x
%J L%/ox

_oi°y °%/o_l_x ] _Xoi_< %io7,

_o'°__'o'_"ll_q+l_'o'°_ _,o'O+
Z •_o/°Y a_o/O_Ld_J LOgo/Ok o o/Oy O_.olo__J

Xo/a_l

Yo / _i • d# ÷ 0 • dto - Yo" • dt

L_°J ;<o

_ol[O_o,Ox
>,o/=I_,o/OX
%j L%/Ox

O_'olOyO_olOz[ _ + [O_olO_<
O;,olOy O%loLJ U_.J LO_olO_<

O_olO9

09olO9

O_olO_

_xo,o_.ikq
LLJ

Flolr io+ /OYo/O# • d# + "" . dt 0 _o I_o| _<
LOgo/o_, LZoJ L_o J"

In particular, since

_0 / OlxJ _'0

[i._o,_.l [-o ,o xol>'o'°,1 : _o +o_o/
_oi o#x..J _o _o _'o._]

it follows that

 x0, ixoyo / o# = Yo Yo /
z 01 O Zo _OJ

Yo/°_ = Yo Yo .Y.o

_o / a o _o Zo

I §l/(rOr) 1

_2/r /

_/r- %J

['r 1
- U/r + s 3

- U/r + s 3
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A similar method of expressing the partials of x O, YO' Zo and

Xo' YO' Zo with respect to x, y, z and x, y, _ by first using the

functions of _-and then converting to functions of _ gives

Xo/aX

YO/Ox

Zo/ax

aXo/ ay

aYo/a y

az 0 ay

axo/ _ o o _o

az _ -u " [_ayo/ = o

a_o / o o o L_o_j

o _o

YO YO

0 _0.

- f s 1 + (_-l)/r

- r

Xo/a:_ ax 0

yo / O_: ay o

Zo/ o_: az 0

a?,

kO / ax aXo/ay

I_.oIOX_o/o_
Lazo/ax a_o/_)y

I Xo _:o1- YO YO

z0 Zo_J

aYo/a = _

azo/a _J
[! I .-'1_oo _7o

o +_i,o D
0 g LZo

lz° <">'7I:,o yolC-<_-,,_,<s_
o _'aJ

Y

a#o/a = -

a_o/a
iio I ol

o _'o
fs +{f- )Ir

s , , o  :jL
__ (__0 + _" + __Z) r

rr 0 r r0 0

f s I + (_-l)Ir _ Sz
I

r

Y
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I aa_°/

O_o/a_.

_o / a_

#o/# #o/_1 = f +u vo
a_,o/ a,) a_.o/_J o

[ _.]

÷
_ f s + (f-1)/r (f-l) s 1 1r 0 r 0

Yo - _ sz (f- l) sz

0

These inverse partial derivatives are often utilized for computation.

However, they satisfy identically the well-known formulas

Xo/OX aXo/aY 8Xo/Oz I Fa_/8_o Ox/°y 0 ax/a_o 1_o/_x _o/_ °_o/°"/ : I_/_*o _/_o °_/°_o/
_oI ax azo/ay aZo/_J L a_'l _o a_l a')o a2/_0J

T

O h' 0 ox, ox, ol%/_ O_o/O,;. Oyo/O_.|=_ ]Oy/_o _/°_o Oyl 0%|
o%1a_ a%I a_ azoI o_.J Lazl _0 Ozl _o azl o_.0J

T

_o I ax axolay a_:ol az la_l aKo axlay o axlaz o

[O_o/O. Oyo/Oy o%/oz --- /_o °_/°Yo °'_/°Zo
[2Zo/ax No/_ a_.o/a Laz/ax ° az/ay ° a _./az °

T

_o/_ °_o/_ _o/_|= lO_/°Xo_/°_o _/%|
_o I a_ a_ol @ a_ol a_j Lazl axo azlay ° azl azoj

T

where the T indicates matrix transposition. Thus the inverse partials of

Xo' YO' Zo and Xo' YO' Zo with respect to x, y, z and x, y, z may be

obtained directly from the partials of x, y, z and x, y, _. with respect

to x O, YO' Zo and Xo' YO' _'0"
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3.SOME USEFUL FORMULAS FOR DERIVATION AND COMPUTATION

3. 1 THE PROOF OF SERIES IDENTITIES

Several identities were used in the derivation above for the partial

derivatives.

As an example, consider

2 Z

so - as I = I.

This may be proven by collecting coefficients of the same powers of

in the products of the series.

2 _4 _Z/ 2 4/4(I + _ _ 2/2!+ _ /4l + .... ) . (I + _ Z! + _ _b ! + .... )

_3/3 2 _5 2 5/-c_ (_ + oz ! + c_ /5 !+ ...) ( _+c_ _ 3/3! +c_ _ 5! + .... )

2( I/Z 2 _ 4(1/4= I +a _ ! + I/Z!) ,a ! + I_2! 2_+ I/4!) + ....

2 Z @4(-a _ - a I/3! + I/3!) - ....

2 2 ¢4( l÷= I + a ¢ (I-i) + a 6+i-4-4)/4! + ....

= 1

The product is valid since the series sO , s l, s2, s3, s4, s5 above are

always absolutely convergent. However, an alternate proof is to first ob-

serve that the identity is true for zero _ where each series reduces

to its leading term. If c_ is negative, then

From above where

so that

2

so -

S
0

S
1

= - via

=cos AE

= sin AE

am = a

2 2
O_S = cos _ ÷ // ( sin Z_E

1 a v/-p-7a

= 1.

Z 2 Z
) = cos ZXE ÷ sin AE
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Similarly, if _ is positive, then

so = cosh AF

s = sinh" AF
1

from above where

so that

2 2 =
so - ol s I = cosh 2 AF -_ sinh AF)2 c°sh 2

= 1.

2
AF- sinh AF

Thus the identity is true for all _ and all ¢ .

The other series identities used in the partial derivatives involve

8s 8s asZ 8s 30 l
80_ ' 8_ ' 3c_ ' 8o_ They may also be proven by collecting

coefficients of the same powers of _ in the products of the series.

However, the relations

OSo = Ss
Z _ 1

_S

Z 1 = ¢ sz -s 3
8_

8s Z

2 _o_ - ¢ s3- 2s4

8s 3

2 - _ s - 3s 58o_ 4

may be proven by a term-by-term comparison Df the two sides of each

equation. If these formulas are substituted in the identities, each identity

is valid for zero a. But
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s O = 1 + _s Z

s I = _b+ o_ s 3

z/
s2 = ¢ Z! + _ s 4

s3 = ¢ 3/3! + _ s5

similarly, so that, for non-zero o_

s o - 1 = 1 - s o

cos h AF - 1

ol

s -¢
1

s3

sin h AF/_-
=

ot

sinh A F -

3

s4 = s 2 - ¢ Z/2 !

i -- COS

u/a

_b _ s
1

AE

A_-'I_ AE/ _- sin AE/
lx/a

AE- sin AE

3

z _-7-_-

£

s 5
= s 3 -

(sin h AF - A F)/ _r_-_( AFIre)3/3 !

(cos h AF -l)/ <_ - (AFI Vr-d')Z/Z!_ (AEId--_TK)ZlZ!-(I-cosAE)I(Ix/a)
a - _la

{cos hAF -1)-AZF/z! AZE/z!- (1 - cos AE)
=

2
a { 11 /a) z

_3/3! : ¢3/3! _ s 3

_ (h E _J/_a)3/3-(hE-sinAE) _J/_a 3

u/_
(sinh AF - AF) -A3F/3! A3E/3! -( AE - sin AE)

-5
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Use of these relations proves the identities for both negative

where A E is real or positive ot where AF is real. For example,

as I 0s 2

s z s 3 = Z (s z as -Sl O----_ )

as I as Z

= sZ (Z---_) - s I ( Z 8----_)

= sz ( ¢ s z - s3) - s I ( ¢ s 3 - Zs4)

is true when _ is zero since

(¢ Z/Z]) (¢3/3!) = (¢2/2!)( ¢ ¢2/2! --¢3/3!)-(¢)(¢ ¢3/3! - 2¢ 4/4!)

5/ ¢5¢ 12 = (I/4 - I/iZ- I/3 + I/IZ)

= ¢5/IZ.

For negative c_ ,

I - cos AE AE- sin /%E _ l-cos AE(_E_. _-cos AE &E - sin AE)J./a ./a .V9-7-C3

sin AE / E AE - sin AE

-2
AZE/2! - (i -cos AIE)

( u la)z )

(1-cos AE) ( AE - sin AE) = (l-cosAE) (AE -AE cos AE - AE + sinAE)

- AE sin AE( AE - sin AE) + Z sin AE A Z E/Z!

_2 sin /% E (I - cos /% E)

= (I - cos AE) (sin/%E - AE cos AE)

2
÷ /%E (I - cos /%E) - Z sin /%E (I cos/%E)

= (I - cos /%E) (sin/%E - /%E cos /%E + AE +/%E cos /%E

- 2 sin /%E)

= (I - cos AE) (/%E - sin AE).
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A similar result follows by using AF for positive _, but the use of

A E is actually sufficient since the trigonometric formulas used are

valid for imaginary arguments.
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3. Z THE USE OF DIMENSIONLESS SERIES

For many purposes it is convenient to define the dimensionless

ar gument
Z

and its transcendental functions

cO i + A/Z_ + XZ 3: , 14! + ;_/6! + ....

d = 111! + XI3! + _Z15! + X317! + ....

l 3

cz = I/Z! + %14! + XZl6! + ;_
Z

c: = 1/3! + X/5! + X /7! +
J

Z
c_ = I/4! +%/6! + A /8! + X
4

/8! + ....

3
19! + ....

3
/lO! + ....

Z 3

c5 = I/5! + ;_/7! + X /91 + }, /ii! + ....

which are related to sO, s I, sZ, s3, s4, s5 by

S = C
0 o

Sl=¢C

s Z _Zlc Z

3

s3 = _ c3

4

s 4 = J# c 4

5
s 5 = ¢ c 5

The dimensionless series have the property that

Co= I+ k cZ

Cl: i÷ _, c3

cz = I/2[ + %c 4

c 3 = 1/3 ! + _ c 5

or, conversely, if _ # 0, that

c5 : (c3- I/3!)/x

c4 = (c2 - I/Z!)/x

c3 = (c I - l)Ix

c2 : (c o _ 1)/A
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In terms of trigonometric or hyperbolic functions,

2. 3

co = 1 + X/2! + X 14! + ;_ 16l + ....

Z 4 6

= I +¢G-IZ_ + ¢_14! +v_-16! + ....

for _ _ O,

= cos h V_=cos h(i _- _}

/

= cos _/ -

Z 3

c = 1 + _/3! ÷ % /5! ÷ % /7! + ....
1

3 5

= ( V-f+ ¢q-13!+_ IS!+ .... ) /V-k-

= sin hV r_- IVY-= sin h ¢i vT_) I (i _) = i sin V_-l¢i_-)

= sin _-_-/ V_- _ .

Let c 0 {4X}and c 1 {4_be, respectively, the values of c 0 and c 1 for the

argument (4_) rather than _ Then, for_:_ 0 and X < 0, respectively,

c o {4_} = cos h _4_ = cos _-4_

= cos h (2V_--) = cos (Z Vd--X )

h 2 2= Z cos _ -! = Z cos Vr-_ -1

= sin h 4V_'-/ _/4_= sin _ / Vr-4l

= sin h (2 _--) / (2_t_ --) = sin (2 _-X) / (2 _-_)

= cos h _ (sin h_-/_- ) = cos _/'_-_" (sin _r-i-_/ _=_)
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s o that

Z
c0{4_}--z c0 {_ } - ,

c I {4X }: c0 { X } c I {_ } •

These two relations are also true for zero X , and are thus valid

for all values ol _. It is worth noting that the argument

and _ are simultaneously positive, zero, or negative except in

the trivial case where _b and thus )t are both zero.
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3.3 FORMULAS FOR THE SOLUTION OF KEPLER'S EQUATION

It was shown above that the general equation

t = t o + r 0 s 1 + % s 2 + _s 3

relating t and @ is a generalization of Kepler's equation for elliptic

motion. Sturnpff (196Z) calls it the main equation but prefers an

equivalent of the alternate form

t = t 0_- r 0 # + _0 sz + ?0 s3"

The first, second, and third derivatives of this alternate form

with respect to _, give the formulas

r = ro + frO Sl ÷ ?0 Sz

for the radius,

_= _ So+ Io s

for the scalar product of the position and velocity vectors, and

: "YoSo + % sl

for the parameter T which equals p for parabolic motion, i.e. for

= O. When _0 and %'0 are both zero, r is always equal to r 0

whereas a and 3, are both always zero. Then the motion is circular

and @ is a linear function of t.

In computing coordinates with or without partial derivatives for

a particular time t, it is necessary to solve for that value of ¢

which satisfies the main equation above. With a slight change in

terminology, let

(t - to) = r0 Sl + if0 sg + Ns3
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be the time interval computed directly from any value of ¢ ,

and let T be the desired time interval. Then the change A_b in

required to change (t - to) to T is given by

d ( t - t0)
T'= (t - t 0) + AS

d$

to first order accuracy. Thus

T-- ( t - to) "= r A¢

where r is the radius for the particular value of ¢ . The value

¢, = ¢ +A¢

is then a better approximation for the desired value of _ if the

first order approximation is accurate. Explicitly, if

AT = r0 s I + % sZ ÷ ._s3 --T

r = r0 so + % s I + /_s2

are first computed from

_b = _b- AT/r .

_b, then

This is Newton's method for the solution of the main equation.

Using _b as a new value for _ then gives a new approximation,

etc. However, a method of stopping the iterations is necessary. Also,

Newton's method is not always convergent and should be backed up by

alternate methods for obtaining a better approximation ¢ from _b .

The iterations may be controlled by always bounding the solution by

the maximum known value __ and minimum known value _b+for which

the respective residuals AT_ and AT+ are, respectively, negative and

positive. Then any approximation _# is accepted at a new value of ¢

only if

__< _*< ¢+

#
i.e. if _ is between ¢ and ¢+ but not equal to _b or _+ .

When the value _b_ computed by Newton's method fails to lie

between _b and ¢+, alternate methods may be tried to obtain a

67



satisfactory value of ¢_. One such formula is

= ¢ (i- AT/rl

which gives smaller corrections to ¢ for smaller values of IATI.

Another is to define _ as the value satisfying the interpolation

formula

¢_- _* _+- ¢*

AT /xT+
Explicit solution of this equation gives

# AT
= __ - _ (_+- __)

AT+- AT_

The use of these formulas is treated in the description of the

Fortran subroutine in Section 4. i.
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3.4 FORMULAS FOR SERIES COMPUTATION

Each iteration in the solution of the general form of Kepler's

equation requires the evaluation of So, sI, sZ, and s3 from a given

value of _ . The evaluation of s4 and s5 from the final value of
is also required for the determination of partial derivatives. However,

it is convenient to compute the dimensionless series cO, c l, c2, c3,

c4, c5 of the argument
)_= a g;2

rather than s O , s I, s2, s3. s4. s5 directly. Then

sO = cO

s I = _ c 1

s2 = _2c 2

s3 = _b3c3

give the values required for each iteration of Kepler's equation. The

final value of c4 and c 5 may be used to obtain

U = s Z (t-to) ¢ /_ (c 4 - 3c5) _b5

so that s 4 and s 5 are never required explicitly.

The series c O , c 1, cz, c 3, c 4, and c 5 must be:computed from

arbitrarily large values of I hi , i.e. for arbitrarily large values

of [aland [_b[ , in order to determine coordinates and partial de-

rivatives for arbitrarily large values of IT I, i.e. for any value of t .

This may be done by repeatedly dividing X by 4 when ]X I > 1 until

th
the m division reduces the argument to one or less in magnitude.

Then c o and c 1 are computed as described below with the reduced

argument. Then the formulas
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co {4X} : 2c0 2 {X}-l

c I {4X} : c0{h } • c 1 {X}

are applied repeatedly m times to obain their true values for the

original value of X Then the formulas

c 2 = (c o - 1) /X

c 3 = (c I - 1)/X

c 4 = (c 2 - 112) /X

c 5 = (c 5 - 116)IX

above give the true values of the four remaining:series. This approach

seems to be quite satisfactory, but an alternate method is to determine

co = cos ¢--2"X"

c I = sin _ /_f"zX

directly when X<-I or

Co = cosh 4"-X

c I = sinh ,/7 / ¢--x

directly when X > 1 . Then the same four formulas above give c2, c3, c 4

and c 5.

The series c O , Cl, c2, c3, c4, c 5 may aI1 be determined from a

given value of X by first using the nesting formulas

{E E ' 0 ] )c5 : 4- 1 + (1 + .... ÷ (2n+3) (Zn+2 (2n+l) (2n) " "') @'8 _ /5,

(, [, <, [ , ] ,c 4 = + + + .... 1 + (Zn+2)]2n+l) (Zn) (Zn-1) "'" 4!

to determine c 5 and c 4. The number of terms n required for the

computation is considered below. Eight terms, i.e. seven leading l's,

are sufficient for accurate floating-point computation to sixteen decimal
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digits when Ill <- 1 which is always true since if Ill> i initially

it is either reduced as described above or the alternate method is

utilized. Then the resulting values of c 5 and c 4 give

c 3 = 1/6 + _ c 5

c 2 = ]/2 + A c 4

Cl= i + A.c 3

co = 1 + hc z

for the remaining four series. If the argument has been reduced, cO

and c] are then used as described above to obtain the true values of

cO, c i, cZ, c3. c4, and c5.
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3. 5 THE ACCURACY OF THE SERIES COMPUTATION

The limiting cases in the nesting computation above occur when

l_I = I. If _:-I, then

co = cos /'=7 = cos (I)

= . 54030

c Z = (c o - 1) / A= (.54030-1)/(-1)

= . 45970

= (c 2 - l/Z) / X = (.45970 - .50000) / (-1)C 4

= .04030

and, similarly,

: sin _ /_--_: sin (1)/(1)
C 1

c 3

c 5

= .84147

= (c 1 -1) /x

= .15853

= (c 3 1/6) / X

= .00813

Also, if A = I, then

co : cosh _--X

= 1.54308

c z = (c o - l)/_

= .54308

: (. 84147 - 1)/ (-1)

= (. 15853 - .16666) / (-I)

: cosh (1)

: (i.54308 -1)/ (1)

c 4 : (c Z - 1/Z)/A : (. 54308- .50000)/(1)

= . 04308

and, simiiarly,

c 1 : sinh _-X / 4--X = sinh (I)I(I)

= 1.17520

c 3 = (c 1 - 1)/X : (1.17520 1)/(1)

= .17520

c 5 = (c 3 - 1/6)/ X = (. 175Z0 - . 16666)/(1)

= .00754
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Suppose that eight terms are chosen to compute c4 and c 5 for

Ikl = i. Then if k = -I, the truncation error Ac 4 introduced in

computing c4 is
8 9 i0

A c4 = _ /Z0! + _ /ZZ! + A /24! + ....

= + 1/20! - 1/22! + 1/24! + ....

so that

-18

A c4 < 1/20! = . 41103 x I0

from the properties of alternating series.

Thus

Ac4 < .41103 x 10 -18

c4
• 04030

-18
= 10. 19 x 10

AC4c4 ]< .i019 x 10 -16

Similarly, the truncation error Ac 5 introduced in computing c5 is

8 9 I0

Ac 5 = _ /21! + _ /23! + t /25 ! + ....
i

= 1/21!- 1/Z3! ÷ 1/25!- ....

so that

and

A c 5 < 1/21! =
01957 x 10 -18

Ac5 .01957 x 10 -18 -18
< = Z. 407 x 10

c .00813
5

Ac5 I 2407 x 10 -17
C <"

5
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If 2_= + lwith eight terms, the truncation error A c 4 introduced

in computing c 4 is

8 9 10

A c 4 = _ /Z0! + X /227 + _ /24! + ....

= 1/20! + 1/22! ÷ 1/24! ÷ ....

< i120[ + l/(ZO z • 20!) + 11(204 •

= (i + I1202 ÷ I1204 + .... )120!

zo!) + ....

= [1t(1 - 1/20)]

-17
= .04326 x 10

/20! = (20/19)/20! = (1/19!)/19

so that

Ac4 .04326 x 10 -17

c 4 .04308

-17
=I. 004 x I0

[ Ac4[ 10 -16
c4 < .1004 x

Similarly, the truncation error hc 5 introduced in computing c 5 is

A c5

8 9 i0

X /21! + I ]23! + X /25! + ....

= 1/21 ! + 1/23 ! + I/ZS! + ....

< 1/21! + I/(21 a. 21!) + I/(214

= (I + 1/21Z + 1/214 + .... )/21!

= [I/ (1-1/21)]

-18
= .02055 x i0

Z1 !) + ....

/21! = (21/20)/21! = (I/20!)/20
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s o that

Ac 5 -18< 02055 x I0 -18" = 2.72 x lO

c5 .00754

IAc-----_51< ,272 x 10-17
c 5

Thus eight terms are sufficient for sixteen significant figures

in the nesting computation above for c 5 and c4 with I_{< 1. A

similar derivation will determine a sufficient number of terms if a

different number of significant figures is required. Ordinarily this

is determined by the particular electronic computer utilized, e.g.

the IBM 7094 has 54 binary bits in a double-precision fraction which

gives slightly more than 16 significant decimal digits for floating-

point computation.

75



4. THE DOUBLE-PRECISION FORTRAN 4 IBM 7094 SUBROUTINE

4. 1 DESCRIPTION OF PROGRAM INPUTS AND OUTPUTS

The Fortran 4 IBM 7094 double-precision subroutine TWOBDY

has the following nine inputs. The six initial position and velocity

components at the reference time tO are input as a state vector

x0 [

Y0]

z0[

u ,

x0 [

Y0[

z0J

The seventh input is the time interval

T = t- t0

between the reference time tO and the time t at which a solution is

desired. The eighth input is the constant _ in the differential equation

where

/_ = G (m I ÷ m2}

if relative coordinates between two gravitationally attracting masses

m I and m Z are being obtained. The ninth input is an approximate

value for the final solution _ of Kepler's equation where

_ =0

is used if no approximation is available.

The input value of @ is changed by the program to the actual

solution of Kepler's equation for the input time interval T. Thus

the ninth input to the program is also an output quantity. The number
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of iterations required to solve the general form of Kepler's

equation can be considerably reduced if a good input approximation

for _b is available. In particular, solutions may be required for a

whole series of values of T which differ by given increments. Then

the use of the previous value of _b as an input approximation for

at each new incremented value of • is very efficient. It is usually

better to use an input approximation for _b even if it is only known

very roughly. If not, it is more efficient to use an input value of

zero although the program will work with any input value for the

parameter _b.

The program outputs the six position and velocity components

in the form of a state vector

X

Y

Z

X

Y

for the time t. The 36 partial derivatives of x, y, z, _c, _, _ with

respect to x 0, Y0' z0' x0' Y0' z0 are output in a 6 x 6 matrix

ax/ _xo ax/ ayo ax/az0 a_/8_0 ax/a_r0 ax/a_o

DY/ ax0 0Y/_0 aY/0z0 aY/0:_0 aY/_Y0 8 Y/8_'0

a../a. ° az/ay ° azlaz ° a..la_ a..l_o a"la;o

a_lax o a_:lay o a_laz o _I_ o a_:l a_o a_:l _o

a_l ax o _I ay o a_l a..o a_-I a_o a_l a_o a,_l a_o

_a_lax ° a_IOy o a_.l az o O_l a_ o a_la,>o a_.la_o_
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Similarly, the inverse partial derivatives are output in a 6x6 matrix

aXo/_x OXo/ay OXo/OZ OXo/0_¢ OXo/O# 0 Xo/8;.

Oyo/Ox _o/Oy OYo/OZ OYo/O£ OYo/O_ OYo/o;.

Ozo/Ox OZo/Oy OZo/OZ OZo/O_ O_o/o_. OZo/O_

O_olOx _olOY O_olOz O£olO£ O£oI o_ O£oi Oz

O_-olOx O_olOY O_olOz O9oI_ _ola_ - OYolO_

O_.ol Ox O_ol Oy O_.ol Oz _o10£ O_.ol o _- O_olO _

The two 6x6 matrices above are also matrix inverses. That is, their

product should give a 6x6 identity matrix.

The six partial derivatives of x, y, z, _, _, _ with respect to

# are output as a vector

-0 x/O_-

Oy/O_

0 z/O_

0 £/o_

o91 o,

_o _:/o__

Similarly, the six inverse partial derivatives of x O, YO' Zo' Xo' YO' _'0

with respect to p are output as a vector

-8 x0 / 0_'_

OyolO_

o zolO_

a _o / a_

o _-olO_

_o _o / o__
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Additional outputs are the acceleration vector

at time t and the acceleration vector

at time t O , as well as the radius

_fx 2 2 2
r = +y +z

at time t and the radius

.f 2 ze
r = Vx02 + Y0 + z0
0

at time t o •

The Fortran symbols for the inputs and outputs above are

listed in comment statements at the beginning of the subroutine.

The program may be used as a "black box" by those not interested

in the formulation or computation. However, a knowledge of the

operation of the subroutine is very important if modifications are

desired for particular applications. For example, it may be de-

sired to eliminate the partial derivatives or at least make their

computation optional since they are not required in many cases.

However, such modifications will be worthwhile only where the

particular application is encountered repeatedly. Ordinarily it is

better to use the program as it stands without modification although

this may involve some redundant computation. In any case, the

operation of the program is described below for those who are in-

terested.
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4. Z THE INITIAL COMPUTATIONS

The following initial computations are performed only once

before starting the series computation below that is repeated for

each iteration in the solution of Kepler's equation. The following

technique for computing the radius r 0 at time tO is used to avoid

utilizing a square root subroutine. First

b = maximum ([Xol, lyoI, [ZoI)

c = (xo/b)a + (Yo/b) Z + (zo/b)Z

are computed and the initial value of d is set equal to two. Then a

better approximation d_ for the square root of c is obtained from

d* = (d + c/d)/2

and d* is used as a new value of d to iterate the formula. The

iterations are continued until d is no longer greater than d* which

is then accepted as the square root of c. Then

r 0 = b- d*

gives the radius r 0 at the reference time. The quantities

_0 = x0 x0 + Y0)0 + z0 _0

• 2 Z Z _2#/r0= Xo + Y0 + z0

are then computed. It is also necessary to initialized a counter m

to zero in order to compute the series described below for large

arguments.

I_ the trivial case where T is zero, _ is set equal to zero and

the series computation below is performed. The known value zero for

_b satisfies Kepler's equation identically so that all the outputs will

then be computed by the program. If r is negative, it is known that

must also be negative. Thus the right bound _+ for _ is set equal

to zero and its residual AT is set equal
+

8O



to the known value -_-, whereas the left bound _b and its residual

AT are both set to _.oo, i.e. the negative of the largest number

available for computation. If T is positive, it is known that _b must

be positive. Thus the left bound ¢ for _b is set equal to zero and its

residual A T is set equal to the known value -T, whereas the right

bound _b+ and its residual AT+ are both set to + _, i.e. the largest

number available for computation.

If the input approximation for ¢ then lies between ¢_ and ¢ +,

it is used in the series computation below. If not, Newton's method

using an initial _b of zero gives the approximation

¢= v /r 0

which is then tried. If this value is not numerically between ¢ and

¢
+'

¢= T

is used to start the series computation. Thus an initial approximation

for _b is always obtained which is between _b and ¢ but not equal
- +

to either.

4.3 THE SERIES COMPUTATION

The computation of the series is begun by computing the argument

t=o_ ¢2

of the simensionless series. If I_1 > 1, the value is saved as 2,
P

but _ itself is repeatedly divided by 4 until 12,[ < 1, and the number

m of required division_ is also counted. Then 3c 5 and c 4 are computed

by the nesting formulas

x x x_k_) x x x
3c 5 : (i+(I+(I÷(I+(I+(I+(I+ 19. 18)I-'_.16 15. 14)13 .12 _9.-_8 7.-_61 40

c4 = (I+(I+(I÷(I+(I÷(I+(I+ 18-_) 16. I i--6T_.9)8.-_76-_5)/ 24
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which in turn give

c3 = [11z + x (3c_)1 13

c 2 = i/2 + _ c 4

c 1 : 1+ kc 3

c o = i + _ c 2

where each series is correct to sixteen significant figures.

If the original value of _ has not been reduced, the series s3,

s 2, s I are computed as described below.

reduced, i.e. if m> 0, the formulas

* Z

c o = 2 c O -i

#

c 1 = c 1 c o

are applied m times with c O

The final values of c o and c 1

and c 1 for the original value of

cz=(c o- i)/ Xp

c3 = (cI - I)/ x P

c 4 = (c2 - 112.)/ X
P

3c 5 = (3c 3 1/z)/ x p

If the original 2_ has been

and c 1 as new values for c o and c 1.

are accepted as the ffrue values of c O

;_, i.e. for X. Also
P

are computed as the true value of the dimensionless series.

1 give the series s3, s 2, s 1The dimensionless series c 3, c 2, c

by the formulas

s3 = _3 c3

s2 = _Z cz

S 1 = ¢ c I
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which are used to compute the residual in Kepler's equation below.

The value of co is equal to so and will be used in Newton's method
for solving Kepler's equation. If this particular series computation

should be the last of the iterations for solving Kepler's equation, c4

and 3c5 will be used below to compute partial derivatives. The series
computation described here seems to be quite satisfactory for ob-

taining solutions for two-body motion. The absolute error in the so-

lutions will increase as r and thus _, increase, but this is an

inherent error since the absolute error in r itself increases as it

becomes larger if it is represented as a floating point number.

4.4 THE SOLUTION OF KEPLER'S EQUATION

The residual A T for solving Kepler's equation is found by first

computing

g = ro S l + qO Sz

for the c_arrent value of _ Then

AT= g + # s3 -- T

gives the residual. The radius

r = r 0 e 0 + a0Sl + /_s 2

for the current value of _b is also determined. If AT is zero, the

coordinates are then computed as described below since Kepler's

equation has been solved. If AT is negative, it replaces the old

value of AT and _ replaces the left bound ¢ If A r is positive,

it replaces the old value of AT and _ replaces the right bound $ +.+

Then Newton's method

#
= ¢- Zxr/r

is used in an attempt to obtain a better approximation for _b .

If ¢ > ¢ and ¢ < _b+, ¢ is accepted as a new value of ¢

and the series computation above is repeated. Otherwise, the following
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methods are used succesively in an attempt to obtain an approximation

between _ and @+. First

= __ (1 - 4AT /T )

is tried if IAT- 1<1 AT+[ but

* IT)

is tried if IAT-I >1 AT + I
" The factor 4 helps to give significant

correctionsto_ infloating-pointcomputationwhen I_T-I orI_T+I
#

issmall._ l_T-I= I_T+i or_ failstoliebetween_ and_ +,
the value

= Z@_

is tried if T >0, but

@* = 2@+

is tried if T<0 This insures that the solution will always be isolated

between finite bounds. If this method fails, the interpolation formula :

_* = __ - (@+ - __) _T/(_T+ -. AT-_)

is tried. If this fails, the mid-point

_*= @_ + (@+- ¢_)/2

between @ and _2 is tried. If this fails, the iterations are terminated
- +

and the coordinates are computed since a better value for _ is not

obtainable.

4. 5 THE COMPUTATION OF COORDINATES AND ACCELERATIONS

The final values of the radius r and the function g have been

obtained in the last iteration of Kepler's equation above. The functions

s 1 and s 2 from the last iteration are used to determine

(f-l) = - _,sz/r 0

= _ _Sl/(r rO)

(_-I)= - _ sz/r

84



Then the coordinates are obtained from the relations

x = x 0 + [(f-l) x 0 + g _0 ]

= YO + [(f-l) YO + g YO ]Y

z = z 0 + [(f - 1) z 0 + g zol

;¢ = [_ xo +(_-I) _o ] + _o

= [i Yo + (_-I) _01 , _o

;_ = [i zo ÷ (_-l) ;.o ] + _o

which give maximum accuracy with small values of T for which (f-l),

g, f, (i-l) are each close to zero. Then

3
= - /_x/r

3
%; = - gy/r

3
= - /az/r

give the acceleration components at time t, and the acceleration

component s

x0 = - _ x0/r03

_0 = - " YO/rO 3

3
_0 = -g z0/r0

at time t O are also computed.

4.6 THE COMPUTATION OF PARTIAL DERIVATIVES

The partial derivatives are now computed by determining

U = s 2 (t-to) + tt (c 4 - 3c5) _5

and using _ocations in the matrix of partial derivatives to store

elements of the matrices on the right side of the formulas
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Y/ _ =

_.Ia_,j

i]_-/o,| = .. - ,_
_/a_..j z -Sl/( r ro) 1

SZ/r 0

U/r 0 - s3

IXo-l°_]Ix°Yo/ag / = Yo

_o/a_._J %
xo]r-,.'r1tO L-U/r + s 3

z 0

Ei o,o  iio o. o]_o,_l= _o_o_,o / s2/r

_ola'tJ o ;_o _o L_u/r+ s3

which give the partial derivatives with respect to /_ Similarly,

locations in the matrix of partial derivatives are used to store

elements of the first matrix on the right side of the formulas for

the 2x3 matrices
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[P 1]

_ s 1 + (f-1)/r 0
- _f s Z

r 0

(f-l) s I (f-l) s z

r 0

Xo YO Zo 1
_o #o _o

[P2] = Iixoyozol
if-l) s z gSz-] ;_o _o _o

[ P3 ] =

[P4I =

- __ + + f s I + (_,-1)/r

r _ r

_s 1 + (f-l)/r 0 f s Z

r o

I_ YO

x 0

o _ro

which are stored in locations of the inverse partial derivative matrix.
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Then the computations

I!x/8x 0 8x/_0

y� a_° ay /°'1o

z/8x 0 _)z/Oy 0

a x/a_ o a x/a_r o

ay/Ol ° oy/a_o

a 7.lax o a_/_0

_/ax o a_:/av o

,)/ax o a,)/ay o

_/ax o a_/oy o

j

Eiil fil E!o 'O o1:
8z/OZo_ j

(f-i)+I

0

0

iI
O_/aZo. j

o (f-1
+I

oo]g 0

0 g

0t
0

X

0

a,)/a:_ o a,>/@o a_-/ - u

_0 o]
+ i (_-l)+l oIo (_-l)+lJ

give the 36 partial derivatives of x, y, z, x, _, 6,, with respect

to x 0, Y0' z0' :¢0' Y0' _'0" Finally, the formulas
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-_ Xo/_ aXo/Oy OXo/az'

a yO/aX ayO/ay Oyo/ az

_o Zo/OX o _.o/Oy O_o/O_

m

0 _/Ox 0

: a ,2/o:_ o

a k:/o,2 o o_-/oz o

a,_/@ o o_/a_ o

a_./a,2o a_l a_.o_

T

i!xoJ   xoJ, axJ  o xJ ,.o1yo / a_, ayo/_ Oyo/a& : - y/ok: o oy/a_ o ay/a_ o

Zo/o_: azo/a_- aZo/a ;. I_az/oA o az/a,_ o a_/a ;'.oJ

I ° 0

.,o,.x.,o,, °,o,O.1 Fo,,oxo-,,-oo.,.o1
,o,Ox°,o,,, °_o,,-l.-l°_,°-o,,,,,o °,,,zol
_o/OX O_o/ay a_o/a z_j La_ / aXo o_./a y.o a_/azog

_o/a_ a_o/Oy a_o/a_, 1 Iax/axo °x/ayo aay%/aa_o°1_'o/_ aYo/_ _o/az[: I ay/axo aY/aY o

_.o/,_ a_o/a_ O_o/a_ J La_/0% a_/ay ° a_./o Zoj

give the 36i1'verse partial derivatives of x 0, Y0' z0' x0' Y0' _'0 with

respect to x, y, z, x, y, z. This concludes the computation of all

quantities which are output by the subroutine.

T

T

T
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4.7 SOME PROPERTIES OF THE SUBROUTINE

A Fortran 4 listing of the double-precision subroutine TWOBDY is

given below. The compiled subroutine occupies less than 1500 single-

precision storage locations on the IBM 7094. The minimum running

time is a little over I0 milliseconds and occurs for the trivial case

where the input value of T." is zero. The program will almost always

run in less than 100 milliseconds for a non-zero value of __ where

no input approximation for _ is available. A good input approximation

for _ can reduce the running time to as low as 15 milliseconds. Ex-

tremely unusual cases with no input approximation for _ can take as

much as i000 milliseconds, but the solution will always be obtained.

Accuracy checks indicate that errors in the outputs are always

close to a lower bound below which accuracy improvements are un-

warranted. The lower bound occurs because of uncertainties in the

inputs due to the floating-point representation of numbers. For example,

the absolute error in x should not be reduced below about

X 8 x 16x0 -xx01110 I+ I

÷

ax I. [*o-16yo[ +l ax -16 II. I,o

I axOx [. lio-i6_ol+l ax [.I lo-i6_ol+ ]
_-x° a _'o a _o

+ I.Ilo-l% I + I
8_

{10-16 T[

because each of the eight inputs x0, Y0' z0' x0' Y0" _'0' _* ' and _- is

known to only about sixteen significant figures. Partial derivatives have

been checked by multiplyirg the 6x6 inverse partial derivative matrix. The

difference between the product and the unit matrix is then easily ex-

plainable in terms of errors caused by the floating-point representation

9O



of the partial derivatives.

Results obtained in some limited applications of the subroutine

have been very satisfactory. The author will sincerely appreciate

any suggestions, criticisms, or comments from those using the

Fortran program. A Fortran version for the IBM 360 should be

available shortly. There are several programs available which

solve the equivalent problem accurately and efficiently for particular

cases of two-body motion, The main advantage of the program de-

scribed here is that it offers equal accuracy and efficiency with com-

plete generality as well. This can become extremely important in

applications where a compact program is desired to handle many

different types of two-body motion. In any case, the generality is

provided without any sacrifice of accuracy, efficiency, or compactness,
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4. 8 THE FORTRAN 4 SYMBOLIC LISTING OF THE SUBROUTINE TWOBDY

$IBFTC TWOBDY
SUBROUTINE TwOBDY(SO,TAUPMU,PSI,SpP,PI,PMU,POMU,ACC,ACCO,RtRO)

C

C GENERAL SOLUTION OF TWO BODY PROBLEM WITH PARTIAL DERIVATIVES
C FORIRAN 4 DOUBLE PRECISION SUBROUTINE FOR IBM 7094 WITH IBSYS SYSTEM

C SEE APRIL 1965 ASTRONOMICAL JOURNAL FOR FORMULATION BY W. H. GOODYEAR

C
C CALLING SEQUENCE IS AS FOLLOWS

C CALL TWObDY(SO,TAU,MU,PSI,S,P,PI,PMU,POMU,ACC,ACCO,RpRO)

C

C DOUBLE PRECISION QUANTITIES IN CALLING SEQUENCE ARE AS FOLLOWS

DOUBLE PRECISION SO(6),TAU,MUwPSI
IpS(6)pp(6f6),PI{6p6),PMU{6)pPOMU{6)pACC(3)wACCO{3)PRpRO

C

C INPU]S
C SO(1),SO(2)PSO(3}:XOwYO,ZO:POSIIION COMPONENTS AT REFERENCE TIME TO

C SO(4)wSO(5),SO(6}:XDO,YDOrZDO:VELOCITY COMPONENTS AT REFERENCE TIME TO
C TAU:TIME INTERVAL {T-TO) FRO_ REFERENCE TIME TO TO SOLUTION TIME T

C MU:CONSTANT IN DIFFERENTIAL EQUATIONS (XDDtYDD,ZDD):-MU*{XpYwZ)/(R**3)

C PSI:APPROXIMATION FOR FINAL SOLUTION PSI OF KEPLERtS EQUATION

C

C OUTPUTS

C PSI:GENERALIZED ECCENTRIC ANOMALY:SOLUTION OF KEPLERS EQUATION

C S(1),S(2)tS{3):X,Y,Z:POSITION COMPONENTS AT SOLUTION TIME T:TO÷TAU

C S(4),S(_),S(b):XD,YD,ZD:VELOCITY COMPONENTS AT SOLUTION TIME T:TO+TAU

C P(I_J):PARTIAL DERIVATIVE DS(1)/DSO(J) OF S(1) WITH RESPECT TO SO{J)
C PI(I,J):PARTIAL _SO(1)/DS(J) WITH ROLES OF TO AND T REVERSED

C P_U{I}:PAHTIAL DS{I}/DMU OF S(I} WITH RESPECT TO MU

C POMU(1):PARTIAL USO(1)/DMU WITH ROLES OF TO AND T REVERSED

C ACC(1):-MU*S{I)/(R**3}:ACCELERATION COMPONENT AT SOLUTION TIME T

C ACCO(1):-MU*SO(1)/(RO**3):ACCELERATION COMPONENT AT REFERENCE TIME TO
C R:RADIUS AT TIME T:SQUARE ROOT OF(X**@+Y**2+Z**2)

C RO:RADIUS AT TIME TO:SQUARE ROOT OF(XO**2+YO**2÷ZO**2)
C

C ADUITIONAL DOUBLE PRECISION QUANTITIES FOR COMPUTATION

2pSIGOtALPHA,PSIN,PSIPwAtAP,COpCltC2,C_,C_CSX3,SI,S2tS3_DTAUpDTAUN
3pDTAUP,U,FMlfGpFDpGDMI

C

C START OF INITIAL COMPUTATIONS

C COMPUTE RADIUS RU:SQUARE ROOT OF(XO**2÷YO**2÷ZO**2)
SI=OMAXI(DAB_(SO(1)),DABS(SO(2))pDABS(SO(3)))

$2=(S0(I)/$I)*.2+(S0(2)/$1)*.2+(S0(3)/$1)*.2
R0:2.

10 R:RO
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RO=(R+S2/R)*.b
IF(RO.LT.R) GOTO 10
RO=ROtS1

C COMPUTEOTHERPAHAMETERS
SIGO:SO(1)*SO(4)+SO(E)*SO(5)+SO(3)*SO(6)

ALPHA=SO(4]**@+SO(5)**2+SO(6)**@-@.*MU/RO

C INITIALIZE SERIES MOD COUNT _ TO ZERO
M=O

C INITIALIZE BOUND_ PSIN AND PSIP FOR PSI OR SET PSI:O IF TAU=O

IF(TAU) 20,30,40
20 PSIN=-I.D+3B

PSIP:O.

DTAUN=PSIN
DTAUP=-TAU
GO TO 50

30 PSI;O.

GO TO TO0

40 PSIN:O°

PSIPz+I,D+3B
DTAUN=-TAU

DTAUP=PSIP
C USE APPROXIMATIO(_ FOR PSI IF IT IS BETWEEN BOUNDS PSIN AND PSIP

50 IF(PSI.GT.PSIN.AND.PSI.LT.PSIP) GO TO 100
C TRY NEWTON'S METHOD FOR INITIAL PSI SET EQUAL TO ZERO

PSIzTAU/RO

C SET PSI:TAU IF NEWTON'S METHOD FAILS

IF(PSI.LE.PSIN.OR.PSI.GE.PSIP) PSI:TAU
C END OF INITIAL COMPUTATIONS
C

C BEGINNING OF LOOP FOR SOLVING KEPLERtS EQUATION

C BEGINNING OF SERILS SUMMATIO_
C COMPUTE ARGUMENT A IN REDUCED SERIES OBTAINED BY FACTORING OUT PSI'S

100 A:ALPHA*PSI*PSI

IF(DABS(A).LL.I.) GO TO 120
C SAVE A IN AP AND MOD A IF IT EXCEEDS UNITY IN MAGNITUDE

APzA
llO M:M+I

A=A*.25

IF(DABS(A}.GI°I.] GO lO 110

C SUM SERIES CSX3:3*SS/PSI**5 AND C4:$4/PSI*'4

120 C5X3=(I.+(I.+(I.+(I.e(I.+(I.+(I.+A/342.)*A/272.]*A/210°)*A/15b.)

1 _A/IIO.)*A/72.)*A/42,)/40,
C4 =(I.+(I.+(I.+(I.+(I.+(I.+(I.+A/306.]*A/Z40°)*A/182°)*A/132.)

l =A/90.)*A/56.)*A/30,)/24,
C COMPUTE SERIES C3:S3/PSI**3pCZ:SZ/PSI**Z,CI:SI/PSIpCO:SO

C3=(.5+A*CSX_)/3,
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C2= .5÷A*C4

CI= 1.+A'C5

CO= 1.4A*C2

IF(M.LE.O) GO TO 140

C DEMOD SERIES CO AND CI IF NECESSARY WITH DOUBLE ANGLE FORMULAS
13U C1=CI*C0

C0=2.*C0"C0-I.
M=M-I

IF(M.GT.O) GO TO 130

C DETERMINE CZ.C3pCWpCSX3 FROM COpCI,AP IF DEMOD REQUIRED
C2=(CO-I.)/AI'

C3={CI-I.)/A_'

C@={C2-.b)/AF
CSX3=(3.*C3-.b)/AP

C COMPUTE SERIES $I,$2pS3 FROM CITC2,C3

140 SI=CI*P_I

S2=C2*PSX*pS]

S3:C3*PSI*PSI*PSI
C EN_ OF SERIES SUMMATION

C COMPUTE RESIUUAL UTAU AI_D SLOPE R FOR KEPLER'S EQUATION
G=RO*SI÷SIGO*S2

DTAU=(G+>IU*S3)-TAU

R=DABS(Ro*CO+(SIGO*SI+MU*S2))
IF(DTAU) 200tSOOp210

C RESET BOUND

200 PSIN:PSI

DIAUN:UTAU
GO TO 2_U

210 PSIP:PSI
DTAUP=DTAU

C TRY NEWTON.S MET_OD AND INITIALIZE SELECTOR N
220 PSI=PSI-DTAU/H

N=O

C ACCEPT PSI IF IT IS BETWEEN BOUNDS PSIN AND PSIP
250 IF(PSI._T.PSIN.ANDoPSI.LT.PSIP) GO TO 100

C SELECT ALTERNATE METHOD OF COMPUTING PSI OR STOP ITERATIONS
N:N+I

GO TO (l_2w3w#w_OO)pN

C TRY INCREMENTING BOUND WITH DTAU NEAREST ZERO BY THE RATIO 4*DTAU/TAU

I IF(DAbS(DTAUh).LT.DABS(DTAUP)) PSI=PSIN*(1.-(4.*DTAU_f)/TAU)

IF(UABSI_TAUP).LT.DABS(DIAUN)) PSI=PSIP*(I.-(4.*DTAUP)/TAU)
GO TO @30

C TRY DOUBLING BOUND CLOSEST TO ZERO

Z IF(TAU.GT.O.) PSI=PSIN+PSIN
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IF(TAU,LT,O,) PSI:PSIP÷PSIP
GO TO 230

C TRY INTERPOLATIOh BETWEEN bOUNDS
3 PSI=PSIN÷(PSIP-PSIN)*(-DTAUN/(DTAUP-DTAUN))

GO TO 230
C TRY HALVING BETWEEN BOUNDS

W PSI=PSIN+(PSIP-PSIN)*,5

GO TO 230
C END OF LOOP FOR SOLVING KEPLERtS EQUATION

C
C COMPUTE REMAINING THREE OF FOUR FUNCTIONS FMlpGpFDpGDMI

300 FMI=-MU*S2/RO
FD=-MU*SI/RO/R

GDMI=-MU*S2/R
C COMPUTE COORDINATES AT SOLUTION TIME T=TO÷TAU

DO 310 I=le3
S(1)=SO(1)+(FMI*SO(I)+G*SO(I÷3))

S(I÷3)=(FD*SO(1)+GDMI*SO(I+3))+SO(I+3)

C COMPUTE ACCELERATIONS

ACC(I)=-MU*S(1)/R/R/R

310 ACCO(1)=-MU*_O{I)/RO/RO/RO

C END OF COMPUTATION FOR COORDINATES AND ACCELERATIONS
C

C COMPUTATION OF PARTIAL DERIVATIVES

C COMPUTE COEFFICIENTS FOR STATE PARTIALS
U= S2*TAU+MU*(CW-C5X3)*PSI*PSI*PSI*PSI*PSI

Pilwl)=-{FD*SI÷FMI/RO)/RO

P(Iw2)=-FD*S_
P(2,I)= FMI*SI/RO
P(2p2)= FMI*S2

P(Zp3)= P(Ip2)
P(Ip_)='GDMI*S2
P(2p3)= P(2p2)
P(2p_)= G'S2
P(3pl)=-FD*(CO/RO/R+I,/R/R+I,/RO/RO)
P(3p2)=-(FD*SI+GDM1/R)/R
P(_I)='P(I,I)
P(Ww2)=-P(Ip2)

P(3p3)= P(3_)
P(3w_)=-GDMI*SI/R
P(_w3)=-P(Ip2)

C COMPUTE COEFFICIENTS FOR MU PARTIALS
P(I_5)='SI/RO/R
P(2p5)= S2/RO
P(3,5)= U/RO-S3
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C

C
C
C

P(I,6}=-P(1,b)
P(2,6)= S2/R
P(3'6):-U/R÷S3
DO 400_'_'=1,3

COMPUTE MU PARTIALS

PMU(1):-S(1)*P(2,5)÷S(I÷3)_P(3,5)

PMU(I÷3)= S(Z)*P(IP5)+S(I÷3)*P(2p5)+ACC(1)*p(3,5)
POMU(1):-SO(1)_P(2p6)÷SO(I÷3)*P(3p6)

POMU(I÷5): SO(1)_P(Iw6)÷SO(I÷3)_P(2p6}÷ACCO(I)*P(3,6)
MATRIX ACCUMULATIONS FOR STATE PARTIALS

DO 400 J=IP4

PI(JPI): P(Jwl)*SO(I)÷P(Jp2)*SO(I÷3)

WOO PI(JpI+5}= P(J,3)*SO(1)+P(JpW)*SO(I+3)
DO 410 I:I,3

DO 420 J=1,5
P(IwJ) =S(
P(IpJ+3) =S{
P(I÷3wj} =S(

420 P(I÷3_J+5)=S(
P(lwI) =P(

P(IpI+3) :P(IpI*3) +G
P(I÷3PI) =P(I÷3pl) +FD

410 P(I÷3pI+3}=P(I+3wI+3)+GDMI+I,

TRANSPOSITIONS FUH INVERSE STATE PARTIALS
DO W30 I=I,3

DO _30 J=1,3

PI(J÷3,I÷3)= P(I,J)
PI(J+3pl) =-P(I÷3,J)
PI(J,I+3) =-P(IpJ+3)

430 PI(dwI) = P(I+3_J+3)
END OF COMPUTATION FOR PARTIAL

I)*PI(1,J) +S(I÷3)*PI(2pJ) +U*S(I÷3)*ACCO(J)

I)*PI(IpJ+3)+S(I÷3)*PI(2,J*3)-U*S(I+3)*SO(J+3)

I)*PI(3PJ) +S(I+3)*PI(4,J) +U*ACC(1)*ACCO(J)
I)*PI(3pJ*3)+S(I+3)*PI(W,J*3)-U*ACC(1)*SO(J÷3}
I,I) +FMI+I,

DERIVATIVES

END OF PROGRAM - ALL OUTPUTS HAVE BEEN
RETURN

END

COMPUTED
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